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What is a model?
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A model airplane

A model airplane operates, for the most part, on the same principles as

an actual airplane.
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A lingerie model

Yasmeen Ghauri is a Victoria’s Secret

model.
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Definition of a model

A model is a physical representation of a system we wish to study.

We want to make the model as close to the real thing as our knowledge

and resources will allow.

In drug and toxicology studies we are often interested in the

metabolism of a substance by a human or an animal. Any model we

might propose for one of these systems is going to be an

oversimplification. Nevertheless, some models do an excellent job

describing observations on these systems.
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Introduction to compartment models

• Models

• Kinetics

• Benefits of modeling

• Deterministic and stochastic models
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Compartmental model

A fish tank separated into three compartments by membranes is an

example of a compartment model. The tank is filled with a medium,

and a substance is placed in the medium. We are interested in the

movement of the substance from compartment to compartment.
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A more complicated system

Obviously, the fish tank model is a vast

oversimplification of this systema.

aDrawn by Diane Allen, now age 30, in about

the eighth grade
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Kinetics

Kinetics: a science that deals with the effects of forces upon the

motions of material bodies or with changes in physical or chemical

systems.
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Orders of kinetics

We have to make assumptions about the nature of the transfers from

compartment to compartment. We now discuss zero and first order

kinetics.
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First order kinetics

This figure depicts the side view of the fish tank. Suppose that, in any

small interval of time, the number of molecules of the substance to

move from compartment 1 to compartment 2 is approximately

proportional to the number of molecules present. This is first order

kinetics.
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Zero order kinetics

This figure depicts a fish swimming in water with mercury pollution.

The uptake of mercury by the fish has no material effect on the amount

of mercury in the water. The uptake of mercury is at a constant rate.

This is zero order kinetics.
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The derivative of a function

The derivative of X(t) with respect to t is the change in X(t) per unit

change in t.

Ẋ(t) =
d

dt
X(t) = lim

∆t→0

X(t+∆t)−X(t)

∆t
=

rise

run
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The order of a process in terms of a derivative

The order of a kinetic process is expressed in terms of the derivative of

a function. Let θ be a rate constant. If

Ẋ(t) = θ

the process is zero order. If

Ẋ(t) = θX(t)

the process is first order.
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Kinetic diagram

The first step of the modeling process is to create the kinetic diagram

as follows:

• Determine what components of the system are to be represented by

a compartment.

• Determine the possible transfers between compartments and adopt

a symbol to represent the rate constant associated with each

transfer.
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Pharmacokinetic model diagram

A frequently used pharmacokinetic model is

GI Plasma Other
θ1

θ2

θ3

θ4
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Deterministic and stochastic models

There are two sets of premises commonly assumed for compartmental

analysis. They share the kinetic diagram but differ in the mechanics of

transfer between compartments. Traditionally we assume transfers are

determined by a system of linear differential equations. Many believe it

is more realistic to assume transfers are in accordance with a

probabilistic mechanism. The two sets of premises are called

deterministic and stochastic models, respectively.
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What can we learn from compartment models?

1. If we find a compartment model that describes our data well, we

may have a plausible description of the mechanics underlying data

generation.
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What can we learn? (continued)

2. Having found a plausible model that fits the data well, we can

calculate many interesting things from the model:

• the uptake rate and steady state level of a heavy metal in animal

tissue;

• the average time a drug stays at its site of action;

• the relative bioavailability of two drugs;

• the relationship between drug concentration in a compartment and

symptom relief.
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Differential equations

The solution of systems of linear, first order, homogeneous, differential

equations with constant coefficients is the main tool for deriving and

fitting compartmental models to data.
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Derivatives and Integrals

In the following display, c and d are constants.

f(t) d
dtf(t)

ctd cdtd−1

exp(ct) c exp(ct)

exp(ct)X(t) exp(ct)
(

Ẋ(t) + cX(t)
)

sin(ct) c cos(ct)

cos(ct) −c sin(ct)
∫

g(t)dt g(t)

Read from left to right for derivatives and from right to left for

integerals.
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Characteristic Polynomials

The characteristic polynomial of the 2 × 2 matrix

K =





k11 k12

k21 k22





is
∣

∣

∣

∣

∣

∣

k11 − λ k12

k21 k22 − λ

∣

∣

∣

∣

∣

∣

.

Expanding the determinant gives

λ2 − (k11 + k22)λ+ k11k22 − k12k21.
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Characteristic Equation

Setting the characteristic polynomial equal to zero gives the

characteristic equation. The solutions to the characteristic equation are

λ =
k11 + k22

2
±

√

(k11 − k22)2/4 + k21k12.

The quantity under the radical is called the discriminant. The

solutions to the characteristic equation are called the characteristic

roots or eigenvalues of K.
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Solving 2 × 2 Systems

Let

c = (k11 − k22)
2/4 + k21k12

denote the discriminant of the characteristic equation. The solutions of




Ẋ1(t)

Ẋ2(t)



 =





k11 k12

k21 k22









X1(t)

X2(t)





take a different form for each of the cases: c > 0, c = 0, and c < 0.
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Case c > 0

Without loss of generality , we can assume k12 = 0, and k11 6= k22. For

illustration, we assume X1(0) = D, and X2(0) = 0.

Solving for X1(t)

Ẋ1(t) = k11X1(t)

Ẋ1(t)− k11X1(t) = 0

exp(−k11t)(Ẋ1(t)− k11X1(t)) = 0

exp(−k11t)X1(t) = d

X1(t) = d exp(k11t)

X1(t) = D exp(k11t)
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Solving for X2(t)

Ẋ2(t) = Dk21 exp(k11t) + k22X2(t)

exp(−k22t)(Ẋ2(t)− k22X2(t)) = Dk21 exp((k11 − k22)t)

exp(−k22t)X2(t) = D
k21

k11 − k22
exp((k11 − k22)t) + d

X2(t) = D
k21

k11 − k22
exp(k11t) + d exp(k22t)

X2(t) = D
k21

k11 − k22
(exp(k11t)− exp(k22t))



Nonlinear Models Differential equations 27

Case c = 0

Without loss of generality, we can assume k12 = 0, and k11 = k22.

For illustration, we assume X1(0) = D, and X2(0) = 0.

The solution for X1(t) is the same as for the previous case.
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Solving for X2(t)

Ẋ2(t) = Dk21 exp(k11t) + k22X2(t)

exp(−k22t)(Ẋ2(t)− k22X2(t)) = Dk21 exp((k11 − k22)t)

exp(−k22t)(Ẋ2(t)− k22X2(t)) = Dk21

exp(−k22t)X2(t) = Dk21t+ d

X2(t) = (Dk21t+ d) exp(k22t)

X2(t) = Dk21t exp(k22t)
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Case c < 0

Let m = (k11 + k22)/2 and

M =
1√
−c





k11 −m k12

k21 k22 −m





and I is the identity matrix. The solutions are




X1(t)

X2(t)



 =
(

cos(
√
−c t)I + sin(

√
−c t)M

)





X1(0)

X2(0)



 exp(mt).
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A pharmacokinetic example

The kinetics of drug absorption, distribution, and elimination is called

pharmacokinetics. A knowledge of pharmacokinetics is needed to

administer drugs optimally.
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Pharmacokinetic modeling

t = time from administration of a drug

X(t) = amount of drug in tissue at time t
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Modeling tetracycline metabolism

For Tetracycline given orally, what are the values of the rate constants,

and what is the formula for the amount in the plasma?

GI Plasma
θ1 θ2

Let X1(t) and X2(t) represent the respective amounts of tetracycline in

the two compartments at time t. The equations associated with this

diagram are

Ẋ1(t) = −θ1X1(t)

Ẋ2(t) = θ1X1(t)− θ2X2(t).
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Matrix representation of equations

Let θ =





θ1

θ2



, X(t) =





X1(t)

X2(t)



, Ẋ(t) =





Ẋ1(t)

Ẋ2(t)



, and

K = K(θ) =





−θ1 0

θ1 −θ2



. The matrix representation of the

tetracycline equations is

Ẋ(t) = KX(t).
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The solution of the differential equations

We assume θ1 6= θ2, X1(0) = D, and X2(0) = 0. Using results of

derivation beginning on slide 25 we obtain:

X1(t) = D exp(−θ1t)

X2(t) = D
θ1

−θ1 + θ2
(exp(−θ1t)− exp(−θ2t))
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Lag times

Sometimes there is a time delay before the model takes effect. This

delay is called a lag time, and we denote it by τ . The response allowing

for the possibility of a lag time is

X ′
2(t) =







X2(t− τ) if t > τ

0 otherwise



Nonlinear Models Pharmacokinetic modeling 36

The data

We will fit the model to the dataa:

Time Concentration Time Concentration

ti Yi ti Yi

1 0.7 2 1.2

3 1.4 4 1.4

6 1.1 8 0.8

10 0.6 12 0.5

16 0.3

aWagner, 1967
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The observational model

The observational model is

Yi = X ′
2(ti) + εi.

If the εi terms have equal variances and are uncorrelated, least squares

is an efficient method of estimation. The parameter estimates are the

values that minimize the least squares criteria:

n
∑

i=1

(Yi −X ′
2(ti))

2.
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Fit the model to the data

hours
15105

conc

1.0

0.5

0.0
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Results of model fitting

The estimate of τ is 0.4122. The estimated response for t ≥ 0.4122 is

X ′
2(t) = +2.64969744 exp(−0.1488026(t− 0.4122))

−2.64969744 exp(−0.7157319(t− 0.4122))
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Romeo and Juliet

This little story is by Strogatza. I have added a bit about model fitting.

Juliet is in love with Romeo; but in our version of this story, Romeo is

a fickle lover. The more Juliet loves him; the more he begins to dislike

her. But when she loses interest, his feelings for her warm up. She, on

the other hand, tends to echo him. Her love grows when he loves her,

and it turns to hate when he hates her.
aSteven H. Strogatz, Love Affairs and Differential Equations, Mathematics Mag-

azine, Vol. 61, No. 1, February 1988.
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A model

A simple model for their ill-fated romance is

Ẋ1(t) = −θ1X2(t)

Ẋ2(t) = θ2X1(t)

where X1(t) = Romeo’s love/hate for Juliet at time t, X2(t) = Juliet’s

love/hate for Romeo at time t, and θ1 > 0 and θ2 > 0 are “intensity”

constants.
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The solution

The discriminant is −θ1θ2, a negative number. The solution is obtained

by applying the formula derived starting on slide 29. The result is




X1(t)

X2(t)



 =
(

cos(
√

θ1θ2 t)I + sin(
√

θ1θ2 t)M
)





X1(0)

X2(0)





where

M =





0 −
√

θ1/θ2
√

θ2/θ1 0



 .
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The data

Juliet’s nosey aunt looks in once a month to see how the relationship is

going. The following are her observations:

Month Romeo Juliet Month Romeo Juliet

0 10.0000 0.0000 1 5.4030 4.2074

2 -4.1615 4.5465 3 -9.8999 0.7056

4 -6.5364 -3.7840 5 2.8366 -4.7946

6 9.6017 -1.3971 7 7.5390 3.2849

8 -1.4550 4.9468 9 -9.1113 2.0606

10 -8.3907 -2.7201 11 0.0443 -5.0000

12 8.4385 -2.6829

Positive numbers reflect love, and negative numbers reflect hate.
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The fitted response

X1(t) = 10 cos(t)

X2(t) = 5 sin(t)

Month
121086420

Love

10

5

0

-5

“The sad outcome of their affair is, of course, a never ending cycle of

love and hate; their governing equations are those of a simple harmonic

oscillator. At least they manage to achieve simultaneous love one

quarter of the time.”


