Introduction to Modeling

- 1. What is a model?
- 2. Modeling Methodologies
- 3. Modeling a Computer

1. What is a Model?

Model : a representation that mimics another object under study.

- Physical, logical, functional representation.
- Modeling :

가

The particular features of the model that are implemented depends on the user's requirements and desires.

, ...

- Ex : a toy airplane, a model house,
- The particular features of the model are represented.
- Simple, easier, cheaper to understand the real object

Kinds of models

- 1. Physical model
 - Physical outlook of an object
 - Model is constructed out of plastic, wood, metal, ...
 - Its operation follows the same mechanisms
 -) toy airplane,
- 2. Simulation model
 - Mimics real behavior of the object
 - Manipulation of values that represent physical observation
 -) war game,
- 3. Analytical model
 - Does not represent operations that mimics the behavior of the object

,

- Mathematical operations to capture the relationships

2. Modeling Methodologies

Performance modeling method

1. measurement and empirical models

(가

가

2. simulation(models)

,

3. analytic models

Empirical modeling

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

3. Modeling a Computer

Computer system

- Consists of many components
- Complex, but fast operations
- A large volume of input and output, system states
 - \rightarrow Needs simplified model to understand
- Level of modeling
 - Overly simplified model for a casual user
 - Complex and detailed model for computer engineers
 - → needs a formal way to describe complex models <u>correctly and efficiently</u>
- examples of formal modeling techniques
 - Formal Description Techniques, Simulation Languages, State Transition Diagram, Mathematical Equations.

The computer performs many operations in a period of time, so its actions are similar to physical processes.

- \rightarrow These physical processes are termed <u>stochastic</u> since they appear randomly as a function of time.
- A stochastic model is different from other models. It models systems that will have many <u>possible</u> outputs for a single set of inputs
- What to model for a computer
 - Performance
 - Reliability
 - Operations

Performance Measures

Performance Measures				
Measure	Units	Potential Use		
Throughput Capacity Response time Utilization Reliability Availability Speedup Backlog	Processes/unit time Processes/unit time Units of time Percent of time Mean time to fail, Probability Percent of time Number of effective PUs Number of processes	Productivity evaluation Planning Usability evaluation Configuration Maintenance scheduling Usability evaluation Configuration Usability evaluation		

Workload Parameters

Workload Parameters				
Parameter	Units	Potential Variations		
Interarrival time Task size I/O request rate I/O service rate Memory size Task mix Parallelism	Unit of time Unit of time Number per unit time Number per unit time Kilobytes per task Number of tasks Percent of program	Change the offered load Amount of processing Type of processing I/O device type Multiprogramming level Interactive/batch Vector/sequential		

Probability Theory

- 1. Definition
- 2. Basic Models
- 3. Combinatorics
- 4. Random Variables

1. Definition

Probability theory : a mathematical model that represents the relative frequency of an outcome for an infinite number of repetitions of the experiment.

relative frequency $\triangleq \frac{\text{number of observations of an outcome}}{\text{number of repetitions of the experiment}}$

Actual type of measurement for both the inputs and outputs of a process depend on the environment

Two basic types of environment

- 1. Discrete environment
 - Countable outcomes, a finite or countably infinite number of outcomes
 - ex) Coin flipping, dice tossing, number of humans
- 2. Continuous environment
 - Uncountably infinite number of possible outcomes
 - ex) Room temperature

2. Basic Models

Def. 1

An element is an instance of an object of interest.

Def. 2

A set is a collection of <u>distinct</u> elements. c.f. : A bag is a collection of elements.

() {1, 2, 3} {m|m=2n, n= 1, 2,}: even number
 {{1,2}, 3} { }: null set
 { 0, 1, 2, 3,} countably infinite number of elements
 { x | x [0,1]} uncountably infinite number of elements

Def. 3

The union of two sets A and B contains all elements found in either of the two sets. () A={1, 2}, B={3, 4, 5} A B={1, 2, 3, 4, 5}

Def. 4

The intersection of two sets A and B contains only elements that appear in both sets. () A={1, 2, 3}, B={3, 4} A B={3}

🖵 <u>Def. 5</u>

A set A is a subset of a set B if all the elements in the set A are also in the set B.

() A={1, 2, 3, 4, 5}, B={3, 4} A B

🖵 <u>Def. 6</u>

The complement of a set is the set of all elements in the universe(

element) that are not in the set.

() = {1, 2, 3, 4, 5} A= {1, 2}, \overline{A} = {3, 4, 5}

Def. 7

Two sets A and B are mutually exclusive (disjoint) if they have no elements in common (A $B = \emptyset$).

🖵 <u>Def. 8</u>

Two sets A and B are mutually exhaustive if A B=

🖵 <u>Def. 9</u>

Two sets A and B partition the universal set if they are both mutually exclusive (A $B = \emptyset$) and mutually exhaustive (A B = 0).

,가

Laws of Set Theory

Laws of Set Theory

Table 2.1				
7.	Exclusion	$A \cap A' = \emptyset$		
6.	DeMorgan's	$(A \cap B)' = A' \cup B'$ $(A \cup B)' = A' \cap B'$		
5.	Inverse	$(\mathcal{A}')' = \mathcal{A}$		
4.	Identity	$A \cap \Omega = A$ $A \cup \emptyset = A$		
3.		$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		
2.	Associative	$A \cap (B \cap C) = (A \cap B) \cap C$ $A \cup (B \cup C) = (A \cup B) \cup C$		
1.	Commutative	$A \cap B = B \cap A$ $A \cup B = B \cup A$		

Def. 10

The sample space for an experiment is the set of all possible outcomes.

() Example of flipping a coin, S={H, T}

🖵 <u>Def. 11</u>

An event is a set of outcome. (subset of the sample space)

() S={HH, HT, TH, TT}

```
events : {HH, HT, TH, TT}, {HT, TH}, {HH}
```


Laws of Probability

Def 12

For an sample space , a probability measure P is a function defined on all the subsets of such that :

P[]=1
 For any event A , then P[A] 0
 For any events A, B where A B = Ø, then P[A B] = P[A] + P[B]
 For mutually disjoint events Am,

$$P\left[\bigcup_{m=1}^{\infty} A_m\right] = \sum_{m=1}^{\infty} P[A_m]$$

) Probability measures are functions that give real values between 0 and 1.

Conditional Probability

A situation : A model of a process has been established with its sample space and its probability measure.

- The sample space is too general.
- A condition should be added to the model to restrict the possible outcomes.

Def. 13

The conditional probability P[A|B] is the probability measure for an event A given that only outcomes which are in event B are considered, i.e. the probability of event A given event B

Evaluation of P[A|B]

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

$$P[A|B] = \frac{P[A \cap B]}{P[B]} , P[B] \neq 0$$

P[A B], P[B] : old probability measures of

• () 2
= {HH, HT, TH, TT}
event A= H . S₁={HH}
event B= H . S₂={HH, HT, TH}

$$P[A] = \frac{1}{4}$$
 {HH} / {HH, HT, TH, TT}
 $P[A|B] = \frac{1}{3}$ {HH} / {HH, HT, TH}
 $= \frac{P[A \cap B]}{P[A]} = \frac{P[A]}{P[A]}$ (A B)

$$B = \frac{1}{3} \qquad \text{{HH}} /$$
$$= \frac{P[A \cap B]}{P[B]} = \frac{P[A]}{P[B]} \qquad ($$
$$= \frac{\frac{1}{4}}{\frac{3}{4}}$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Independence

Two events A, B are independent if and only if $P[A \ B] = P[A] \cdot P[B]$.

The probability of an event does not change when a condition is given.

$$P[A|B] = P[A] = \frac{P[A \cap B]}{P[B]}$$

Intersection is reflexive (A B = B A), so A being independent of B means B being independent of A.

Bayes' Theorem

Bayes' Theorem

In a set of mutually exhaustive and exclusive events which form the partition of the sample space and the fact that the event of interest has nonzero probability.

$$P[A_i | B] = \frac{P[A_i \cap B]}{P[B]} = \frac{P[A_i]P[B | A_i]}{\sum_j P[A_j]P[B | A_j]}$$

Condition domain

•) 7¹
(7¹)
Event A₁: pgm 1 . P[A₁]=0.2
Event A₂: pgm 2 . P[A₂]=0.3
Event A₃: pgm 3 . P[A₃]=0.5
Event B : . P[B|A₁]=0.1
P[B|A₂]=0.7
P[B|A₃]=0.1
(
$$P[A_1|B] = \frac{P[A_1]P[B|A_1]}{\sum_{j} P[A_j]P[B|A_j]}$$

 $= \frac{0.2 \times 0.1}{0.2 \times 0.1 + 0.3 \times 0.7 + 0.5 \times 0.1}$
 $= 0.07144$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

3. Combinatorics

N : A number of distinct elements

□ Number of different samples of length R with replacement $= N^{R}$

□ Number of different samples of length R without replacement = $\frac{N!}{(N-R)!}$

Number of possible arrangement by choosing R out of N

- : Permutation of N taken R at a time
- P(N,R)

Number of combinations of N things taken R at a time

$$= \frac{N!}{R! \cdot (N-R)!} \cong \binom{N}{R}$$

Number of subsets of size R we can obtain from the set of size N

$$\sum_{R=0}^{N} \left(\begin{array}{c} N \\ R \end{array} \right) = 2^{N}$$

4. Random Variables

Def. 15

A random variable is <u>a function</u> that assigns a value(real number) to each possible <u>outcome</u> in the sample space.

-) Consider a random experiment defined by a sequence of three Bernoulli trials.
 - The sample space S consists of eight triples of 0's and 1's.
 - Define a random variable X to be the total number of successes from the three trials.
 - The tree diagram : S_n and F_n represent a success and a failure respectively on the n-th trial
 - The probability of success, *p*, is equal to 0.5.
 - The value of random variable X assigned to each sample point is also shown.

Def. 16

The probability mass function (pmf) of the random var. X is a function with the domain consisting of the event space of the random var. X, and with its range in the closed interval [0. 1]

$$P_X(x) = P[X = x] = \sum_{X(s)=x} P(s)$$

Properties of the pmf

Properties of the pmf

- (1) $0 \le P_X(x) \le 1$: $P_x(x)$ is a probability
- (2) Since the random variable assigns some value x R to each sample point s S, we have

$$\sum_{X \in R} P_X(x) = 1$$

(3) For a discrete random variable X such that

$$\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots\}$$

$$\sum_{i} P_X(x_i) =$$

) 3 Bernoulli
For x=0, 1, 2, 3
$$Px(0) = 0.125$$

 $Px(1) = 0.375$
 $Px(2) = 0.375$
 $Px(3) = 0.125$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Cumulative Distribution Function(CDF)

- CDF Probability distribution function, distribution function
- Probability mass function Px(x) random variable X 가 x 가
- set {s|X(s) A} for some subset A of R CDF

•
$$P[X \ A] event[X \ A]$$

 $P[X \ (a,b)] \longrightarrow P(a < x < b)$
 $P[X \ (a,b]] \longrightarrow P(a < x \ b)$
 $\{s \mid X(s) \in A\} = \bigcup_{x_i \in A} \{s \mid X(s) = x_i\}$
 $P[X \in A] = \sum_{x_i \in A} P_X(x_i)$
•) 3 Bernoulli
 $P[X \ 1] = P[X=0] + P[X=1]$

$$= Px(0) + Px(1) = 0.125 + 0.375 = 0.5$$

Def. 17

The function Fx(t), $-\infty < t < \infty$, defined by $F_X(t) = P[-\infty < X \le t] = P[X \le t] = \sum_{x \le t} P_X(x)$

is called cumulative distribution function(CDF) or the probability distribution function of the random variable X.

$$P[a < X \le b] = P[X \le b] - P[X \le a] = F[b] - F[a]$$

If X is an integer value random variable, then

$$\mathbf{F}(\mathbf{t}) = \sum_{-\infty < x \le \lfloor \mathbf{t} \rfloor} P_X(x)$$

☐ Three properties of CDF $(1) F(-\infty) = 0$ $(2) F(\infty) = 1$ $(3) For x_1 < x_2, \quad then F(x_1) \le F(x_2), \quad ->F(x) \text{ is nondecreasing}$ $=> 0 \le F(x) \le 1$

□ <u>4가 CDF</u>

- ① Geometric distribution : infinite set, discrete
- 2 Exponential distribution : infinite set, continuous
- 3 Poisson distribution : infinite set, discrete
- ④ Binomial distribution : *finite* set, discrete of possible values

Geometric Distribution

Geometric Distribution

Head 1-p, tail p
 Let K be the random variable that represents the number of flips required to obtain the first head

P[flip the first head on k-th flip] = (1-p) p^{k-1} for k = 1, 2, $F(k) = \sum_{n=1}^{k} P[\text{flip the first heads on n- th flip}]$ $= \sum_{n=1}^{k} (1-p) p^{n-1} = 1-p^{k}$

Modified Geometric pmf : the random variable that represents the number of flips before we obtain a head,

P[flip the first head on (k+1)st flip] = (1-p) p^k for k = 0, 1, 2, ...

Binomial Cumulative Distribution

Binomial Cumulative Distribution

Random variable K is the number of heads appearing in those N coin flips

P[a sequence of N flips with k heads] = $(1-p)^{k}p^{N-k}$

Many different sequences with k heads

P[k heads] =
$$\binom{N}{k} (1-\rho)^{k} (\rho)^{N-k}$$

Exponential Cumulative Distribution

Exponential Cumulative Distribution

continuous version of the geometric distribution

random variable T represents the amount of time until a success occurs.

) Geometric

Poisson Cumulative Distribution

Poisson Cumulative Distribution

- Continuous version of the binomial distribution
- Trials are allowed at any moment in time
- Random variable k of successes during a fixed period of time T and a success rate λ

P[k successes in time T] =
$$\frac{(\lambda T)^k}{k!}e^{-\lambda T}$$

Probability Density Functions

□ Define the derivative of the distribution function at a discontinuous jump to be a impulse function $\delta(x)$

Basic properties of the Density Function

Basic properties of the Density Function

1. Since
$$F(\infty) = 1$$
, $\int_{-\infty}^{\infty} f(x) dx = 1$

2. Since F(x) is nondecreasing, f(x) = 0

- No bounds on the value of f(x) at a point x.

Calculating Probabilities

The calculation of the probability of any event is simply a series of additions and subtractions of cumulative distribution.

$$P[x \quad b] = P[x \quad a] + P[a < x \quad b] = F(b) = \int_{-\infty}^{b} f(x) dx$$
$$P[x \quad b] - P[x \quad a] = P[a < x \quad b]$$

$$P[a < x \quad b] = F(b) - F(a) = \int_a^b f(x) dx$$

pdf
$$\xrightarrow{\text{integration}} CDF$$
 : continuous case
pmf $\xrightarrow{\text{summation}} CDF$: discrete case

□ <u>Calculating Expectation</u> (,

<u>Def. 19</u>

The expected value E[X] of a r.v. X is the weighted sum(integral) of all possible values of the r.v.

)

$$E[X] = \sum_{-\infty}^{\infty} x \cdot P_x(x) \qquad E[X] = \int_{-\infty}^{\infty} x \cdot f_x(x) dx$$

$$E[X] = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = \frac{21}{6} = 3.5$$

) expected value of a r.v. with modified geometric distribution (1-p) : p: ,

$$E[K] = \sum_{k=0}^{\infty} k(1-p) \cdot p^{k}$$

= $\sum_{k=1}^{\infty} k(1-p) \cdot p \cdot p^{k-1} = (1-p)p \sum_{k=1}^{\infty} k \cdot p^{k-1}$
= $(1-p)p \sum_{k=1}^{\infty} \frac{d}{dp} p^{k} = (1-p)p \frac{d}{dp} \sum_{k=1}^{\infty} p^{k}$
= $(1-p)p \frac{d}{dp} \left(\frac{p}{1-p}\right) = (1-p)p \frac{1}{(1-p)^{2}} = \frac{p}{1-p}$

) expected value of an exponentially distributed r.v.

$$E[T] = \int_0^\infty t \cdot \lambda e^{-\lambda t} dt$$
$$= \int_0^\infty \lambda \cdot (t e^{-\lambda t}) dt = -\lambda \int_0^\infty \left(\frac{d}{d\lambda} e^{-\lambda t}\right) dt$$
$$= -\lambda \frac{d}{d\lambda} \int_0^\infty e^{-\lambda t} dt = -\lambda \frac{d}{d\lambda} \left[\frac{1}{-\lambda} \cdot e^{-\lambda t}\right]_0^\infty$$
$$= -\lambda \frac{d}{d\lambda} \left(\frac{1}{\lambda}\right) = -\lambda \cdot \left(-\frac{1}{\lambda^2}\right) = \frac{1}{\lambda}$$

The expected valued can be calculated on <u>a function of a r.v.</u> as well as a r. v.

- E[x] first moment, expected value, mean
- E[x²] second moment, expected value, mean
- E[x³] third moment, expected value, mean

E[x³ - x]

Multiple Random Variables

,

Marginal density function

Def. 21

The marginal pdf f(x) for a r.v. X is the integral(sum) over all values of r.v. Y of the joint pdf f(x,y)

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$f(c) = f(c, 0) + f(c, 1) + f(c, 2)$$

$$f(2) = f(2, 0) + f(2, 1) + f(2, 2) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$f(3) = f(3, 0) + f(3, 1) + f(3, 2) = \frac{1}{8} + \frac{1}{4} + \frac{1}{8} = \frac{1}{2}$$

Marginal pmf

$$P_{x}(x) = \sum_{a \parallel y} P(x, y)$$

Def. 22

The conditional pdf f(x|A) of a r.v. X given an event A is the pdf f(x) restricted to the range of the r.v. within the event A, divided by the probability of the event A.

$$f(x|A) = \frac{f(x)}{P[A]}, \qquad x \in A$$

Def. 22`

Let X,Y be continuous r.v. with joint pdf f(x,y)The conditional pdf $f_{Y|X}$ is defined by

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_x(x)}, \quad \text{if } 0 < f_x(x) < \infty$$

Conditional pmf

Def. 23

Let X and Y be discrete r.v. having a joint pmf p(x,y). The conditional pmf of Y given X is defined by:

$$P_{Y|X}(y|x) = P[Y = y|X = x] = \frac{P[Y = y \text{ and } X = x]}{P[X = x]} = \frac{P(x, y)}{P_X(x)}$$

Unconditioning

$$P_{Y}(y) = \sum_{a \parallel x} P(x, y) = \sum_{a \parallel x} P_{Y \mid X}(y \mid X) \cdot P_{x}(x)$$
$$f(y) = \int_{0}^{\infty} f(x, y) dx = \int_{0}^{\infty} f(y \mid x) \cdot f(x) dx$$

Independence

<u>Def. 24</u>

Two r.v. are independent iff their joint pdf is equal to the product of their individual marginal probability density functions.

 $f(x,y) = f(x) \cdot f(y)$

Reliability Modeling

- 1. Reliability
- 2. Reliability Measures
- 3. Modeling Techniques
- 4. Evaluation Techniques

1. Reliability

2. Reliability Measures

 Probability that a failed system will be restored to an operational state within a period of time t

Interval availability

0~t

Cumulative up-time(CUT)

0~t

Cumulative down-time(CDT)

0~t

Performability P(L, t)

 Probability that the system performance will be at, or above some level L at time t

 \rightarrow graceful degradation

Fault

A physical defect, imperfection that occurs within some hardware or software component of a system

) A short between electrical conductors, open or break in conductors, physical flaws in semiconductor device, endless loop in a program

Error

Failure

Error system

Failure rate

Expected number of failures of a system per a given time period

□ Failure rate function, hazard function z(t)

3. Modeling Techniques

- (state-space model)
 - event
- Markov model
- Stochastic Petri-Nets
 - (non state-space model)
- Reliability Block Diagram(RBD)
- Reliability Tree
- Reliability Graph

Reliability Block Diagram

Fault-Tolerant DB

DB **RBD**

DB

- R_F(t) : reliability of the front-end
- R_D(t) : reliability of the database
- $R_{S_i}(t)$: reliability of the switches *i*
- $R_{M_i}(t)$: reliability of the memory unit *i*

 $R_{P_{i1}}(t)$, $R_{P_{i2}}(t)$: reliability of the processor P_{i1} , P_{i2} (i = 1, 2)

$$R_{S}(t) = R_{F}(t) * R_{D}(t) * \left(1 - \prod_{i=1}^{2} \left\{1 - R_{S_{i}}(t) * R_{M_{i}}(t) * \left[1 - (1 - R_{P_{i1}}(t)) * (1 - R_{P_{i2}}(t))\right]\right\}\right)$$

$$\mathsf{MTTFs} = \int_{0}^{\infty} \mathsf{Rs}(t) \mathsf{d}t$$
Reliability Graph(RG)

(m);

RG Input, Output

Input Attached to Components

- Probability of failure of a component
- Distribution of time to failure of a component
- Failure rate function of a component

Output Measures Computed

- Mean time to failure of the system
- System reliability(or unreliability) at time t
- Steady-state or instantaneous availability of the system

□ RGs model operational dependency of a system on its components.

□ RGs are easy to understand.

Given a description of operational dependency of a system on its components, the corresponding RG is easy to generate.

□ It is easy to do a hierarchical modeling.

Arbitrary time to failure distributions of system components are allowed.

- Stochastic dependency between different faults can not be modeled.
- RGs can not model dynamic system structure.
- The computational complexity of solving an arbitrary non-seriesparallel RG could be exponential in the number of components.
- Details of the fault recovery behavior are not captured by RGs
- Only one type of fault for each component is modeled.
- RGs can not easily model different system failure modes.
- RGs may not be used for dependability analysis of repairable systems.
- Common-mode failures are not easily modeled by RGs.
- RGs have been traditionally used for block structured systems where simple failures are assumed.

Fault Tree(FT) □ Fault tree AND, OR, NOT , (TRUE, FALSE) 가 TRUE FALSE , FT

FT Gate

🗖 AND :	fail(TRUE)			TRUE,	FALSE
O R :	fail(TRUE)		TRUE,	FALSE	
□ NOT :	fail		FALSE,	TRUE	
🖵 kOFn : n		ł	、 가 fail	TRUE,	FALSE
	ity AND) :			fail	TRUE
🖵 Inhibit : 2					
2 : inhibit event(enabling condition)			component		
🔶 inhibit eve	ent가 TRUE		FALSE		
 inhibit eve 	ent FALSE	compo	onent가 fail	TRUE	
□ XOR :		fail	TRUE,	FALSE	

FT Input, Output

Input Attached to Basic Events

- Probability of failure of a component.
- Failure rate of a component.
- Distribution of time to failure of a component.
- Combination of the above.
- Instantaneous unavailability of a component.
- Steady state unavailability of a component.
- Time that a certain component is operational.

Output Measures Computed

- Mean time to failure of the system.
- System failure probability by time t,
- Instantaneous unavailability at time t.
- Steady-state unavailability of the system.

FT

- □ Fault trees model the conditions leading to system failure.
- Arbitrary failure distributions are allowed.
- Very large systems can be concisely described.
- Use of kOFn gate provides a useful abbreviation.
- A fault tree model is easy to understand.
- Recent research efforts have made it possible to model sequence dependent failures using FTs.
- A fault tree model provides useful information about events leading to system failure.
- Fault-tree models are useful in hierarchical modeling of large and complex systems.

Stochastic dependence of faults can not be modeled.

□ Fault recovery models may not be modeled.

Complex system behavior can not be modeled: not for repairable systems with a shared repair facility

Complex FT models may require solution time exponential in the size of the tree.

Dynamic system structure can not be modeled.

Markov Model

Dependability measures are expressed as weighted sums of state probabilities.

- □ State space S is partitioned into
 - ◆ Su: Up states, operational states
 - ◆ S_D: Down states, failure states
- Instantaneous availability

•
$$I(t) = \begin{cases} 1 & \text{if } X(t) \in S_u \text{ where } X(t) : \text{ State of the MC at time } t \\ 0 & \text{otherwise} \end{cases}$$

• $P_i(t)$: Probability of the system being in state *i* at time *t*

$$A(t) = P[I(t) = 1] = \sum_{i \in Su} Pi(t)$$

Reliability

$$R(t) = P[I(x) = 1, \forall x \in [0, t]]$$

• When S_D are absorbing states.

$$R(t) = \sum_{i \in Su} Pi(t)$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

CTMC (2) Two processor subsystem with multiple absorbing states. λ $2\lambda c$ $2\lambda(1-c)$ 3 Failure-repair model λ $2\lambda c$ μ μ $2\lambda(1-c)$ 3

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Petri Nets Reliability Model

4. Evaluation Techniques

Mean Time To Failure(MTTF)

- Expected time that a system will operate before the first failure occurs. Expected time until the next failure after a repair.
- □ N identical systems, each system operate for t_i before failure.

$$MTTF = \frac{t_1 + t_2 + t_3 + \dots + t_N}{N}$$

$$MTTF = E[T] = \int_0^\infty t \cdot f_T(t) dt = \int_0^\infty R(t) dt$$

$$F(t) = P[T \le t]$$

$$R(t) = P[T > t] \qquad \therefore R(t) = 1 - F(t)$$

) exponential failure law

$$F(t) = 1 - e^{-\lambda t}, \qquad \mathsf{R}(t) = e^{-\lambda t}$$
$$MTTF = \int_0^\infty R(t) dt = \int_0^\infty e^{-\lambda t} dt = \frac{1}{\lambda}$$

Mean Time To Repair(MTTR)

Average time to repair a system

 \Box N faults, t_i : repair time of i-th fault

$$MTTR = \frac{t_1 + t_2 + t_3 + \dots + t_N}{N}$$

Exponentially distributed repair time

Repair rate μ : average number of repairs that occur per time period MTTR = $\frac{1}{\mu}$

Average time between failures of a system

 \Box MTBF = MTTF + MTTR

Reliability of Series Systems

Series system contains no redundancy

A reliability block diagram

 $R_i(t)$: Reliability of component C_i at t $W_i(t)$: An event that component C_i is working at t

$$R_{series}(t) = P[W_1(t) \cap W_2(t) \cap W_3(t) \cap \cdots \cap W_n(t)]$$

assuming C_i are independent

$$R_{series}(t) = R_1(t) \times R_2(t) \times R_3(t) \times \cdots \times R_n(t)$$
$$= \prod_{i=1}^n R_i(t)$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

)
$$R_1(t) = R_2(t) = R_3(t) = 0.9$$

 $R_{series}(t) = 0.9 \times 0.9 \times 0.9 = 0.729$

) A series system of components that satisfy the exponential failure law

$$R_{series}(t) = R_{1}(t) \times R_{2}(t) \times \cdots \times R_{n}(t) = e^{-\lambda_{1}t} \cdot e^{-\lambda_{2}t} \cdots e^{-\lambda_{n}t}$$
$$= e^{-(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n})t} = e^{-\sum_{i=1}^{n}\lambda_{i}t} = e^{-\lambda_{sy}\cdot t}$$
where $\lambda_{sy} = \sum_{i=1}^{n}\lambda_{i}$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Only one of n identical components is required for the system to function

 $R_i(t)$: Reliability of component C_i at t $O_i(t)$: Event that the component C_i has failed at t $U_{para}(t)$: Unreliability of the parallel system at t $U_i(t)$: Unreliability of component the C_i at t

$$U_{para}(t) = P[O_1(t) \cap O_2(t) \cap O_3(t) \cap \cdots \cap O_n(t)]$$

assuming independence

$$U_{para}(t) = U_1(t) \times U_2(t) \times \cdots \times U_n(t) = \prod_{i=1}^n U_i(t)$$
$$R_{para}(t) = 1 - U_{para}(t) = 1 - \prod_{i=1}^n U_i(t) = 1 - \prod_{i=1}^n (1 - R_i(t))$$

)
$$R_1(t) = R_2(t) = R_3(t) = 0.9$$

 $R_{para}(t) = 1 - (1 - 0.9) \times (1 - 0.9) \times (1 - 0.9) = 0.999$

Reliability of Series/Parallel Systems

□ A system that contains both series and parallel structure

Reduce the reliability block diagram to a single series diagram by replacing parallel portions with an equivalent single element

$$R_{system}(t) = R_{bus}(t) \times \left[1 - \left\{1 - R_{IF}(t)\right\}^{2}\right] \times \left[1 - \left\{1 - R_{Disk}(t)\right\}^{3}\right] \times R_{printer}(t)$$

M of the total N identical modules are required to function

- Generalization of the parallel systems
- 2-of-3 system : TMR(Triple Modular Redundancy) System

□ Let $R_{TMR}(t)$: Reliability of TMR system $R_i(t)$: Reliability of module i $R_{TMR}(t) = R_1(t)R_2(t)R_3(t) + R_1(t)R_2(t)\{1 - R_3(t)\} + R_1(t)\{1 - R_2(t)\}R_3(t) + \{1 - R_1(t)\}R_2(t)R_3(t)$

if
$$R_1(t) = R_2(t) = R_3(t) = R$$

 $R_{TMR}(t) = R^3 + 3R^2\{1 - R\} = 3R^2 - 2R^3$

crosspoint

$$R_{TMR} = 3R^{2} - 2R^{3} = R$$

$$2R^{2} - 3R + 1 = 0$$

$$R = 0.5 \text{ or } 1$$
Component(module) reliability 7 + 0.5 TMR fault
tolerance reliability single component system
TMR system single module system reliability 7 + 0.5
M - of - N system reliability
$$R_{M-of-N}(t) = \sum_{i=0}^{N-M} {N \choose i} R^{N-i}(t) \{1 - R(t)\}^{i}$$

$${N \choose i} = \frac{N!}{(N-i)! i!}$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Markov Models

- 1. Introduction
- 2. State Classification
- 3. DTMC
- 4. CTMC

1. Introduction

Modeling a system's behavior of a discrete state space system

: Characterize the dependency of a possible state on the sequence of states S through which the system has previously passed.

$$S = S_1, S_2, S_3, S_4, \dots, S_n, S_{n+1}, \dots$$

 $S = \{m_1, m_2, m_3, m_4, \dots, m_k\}$

 $P[S_{n+1} = m_i | S_n = m_j, S_{n-1} = m_1, S_{n-2} = m_k, \dots, S_1 = m_5]$

- To determine the probability of a particular state being the next state.
- To determine the state which the system visits most frequently.
- To determine the state in some time t after the system begins from a initial state S₁
- May use simulation for these purpose. But the simulation becomes too complex to count all the different history.

Stochastic process

- ① Discrete time processes : the processes are <u>embedded</u> at separate points in time.
- ② Continuous time processes : the processes that change states at an arbitrary point in time.
- Different levels of complexity of stochastic processes are determined by the dependencies between state changes.
 - The next state depends on its entire past history of state changes.
 - The next state depends on the last state change.
 - The next state depends on what the last state was.

Types of discrete state space stochastic processes that depend only on the history from the last state change

- 1. Semi Markov process
 - The next state may be any one in the state space.
 - The next state probabilities depend on the current state and are arbitrary.
 - Arbitrary distribution of time between state changes.

2. Random walk

- The next state may be any one in the state space.
- The next state probabilities depend on the distance from the current position.

$$P[S_{n+1} = m_k | S_n = m_j] = P_{k-j}$$

Arbitrary distribution of time between state changes.

3. Markov chains

- The next state may be any one in the state space.
- The next state probabilities depend on the current state and are arbitrary.
- Exponential distribution of time between state changes

for the continuous time Markov chains(CTMC),

Geometric distribution

for the discrete time Markov chains(DTMC).

4. Birth - Death process

- The next states are the nearest-neighbor state.
- The next state probabilities are zero if the next state is not a neighbor state of the current state.
- Exponential/geometric distribution of time between state changes.

Different Types of Stochastic Processes

Example of a Markov chain : a model of a processor

State space S = {idle, busy, waiting, broken, in repair}

Possible state changes

Current	Possible	Possible	Possible
State	Next State	Next State	Next State
Idle	Busy	Broken	-
Busy	ldle	Waiting	Broken
Waiting	Busy	Broken	-
Broken	Repair	-	-
Repair	Idle	-	-

Transition probability matrix is a stochastic matrix

States	Idle	Busy	Waiting	Broken	Repair
Idle	0.20	0.75	0.00	0.05	0.00
Busy	0.30	0.30	0.30	0.10	0.00
Waiting	0.00	0.55	0.40	0.05	0.00
Broken	0.00	0.00	0.00	0.50	0.50
Repair	0.60	0.00	0.00	0.00	0.40

Graphical representation of a Markov chain

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Stochastic matrix $a_0 + b_0 = 1$ $a_i + b_i + d_i = 1$, for $i \ge 1$

2. State Classification

Def. 6.1

A state is recurrent if the system is in that state and will return to that state through a series of transitions with probability 1.

<u>Def. 6. 2</u>

A state is transient if it is not recurrent. (The probability of returning to that state is less than 1)

Transient state recur

recur

Recurrent state recur
 Recurrent nonnull
 Recurrent null

가

<u>Def. 6.3</u>

A recurrent state is recurrent nonnull if the mean time to return to the state is finite.

Def. 6. 4

A recurrent state is recurrent null if the mean time to return to the state is infinite.

The number of states in a system with recurrent null states is infinite.

In a finite state space Markov chain, there are no recurrent null states and not all states can be transient.

Recurrent state recur

- Aperiodic state
- Periodic state

<u>Def. 6.5</u>

A recurrent state is aperiodic if, for some number k, there is a way to return to the state in k, k+1, k+2,, ∞ transitions.

Def. 6.6

A recurrent state is periodic if it is not aperiodic.

Example of a Markov chain with periodic states

All states are recurrent, nonnull and periodic.

<u>Def. 6.7</u>

A Markov chain is irreducible if all states are reachable from all other states.

reducible MC

irreducible MC

Theorem 6.1

All states of an irreducible, finite state MC are of the same type.

) One state of an irreducible MC is aperiodic \rightarrow All states are aperiodic.

) One state of an irreducible MC is periodic.

 \rightarrow All states are periodic with the same period.

) One state of an irreducible MC is recurrent.

 \rightarrow All states are recurrent.

* Irreducible MC 가 infinite state space 가 transient states 가

<u>Def. 6.8</u>

A Markov chain is calledtransientif all its states are transient.recurrent nonnullif all its states are recurrent nonnull.recurrent nullif all its states are recurrent null.periodic(aperiodic) if all its states are periodic(aperiodic).

<u>Def. 6.9</u>

If a Markov chain is irreducible, recurrent nonnull and aperiodic, it is called *ergodic*.

Theorem 6.2

If a Markov chain is ergodic, there exists a unique limiting distribution for the probability of being in a state k denoted by π_{κ} independent of the initial state. (steady state probability equilibrium probability)

$$\pi_i = \lim_{t \to \infty} \mathcal{P}[X(t) = i]$$

3. DTMC

$\Box One-step transition probability matrix P = [p_{ii}]$

- $\textbf{p}_{ij}\,$: probability that the system will go to state j in one step when the system is in state i
- * The same matrix that used to represent the DTMC model of a processor.
- State probability vector of (n+1) step can be represented with the state probability vector of n-th step multiplied by the one-step transition probability matrix.

$$p(0)P = p(1) \qquad P_{j}(n+1) = P[X_{n+1} = j] \\ = \sum_{i} P[X_{n} = i]P[X_{n+1} = j | X_{n} = i] \\ p(n)P = p(n+1)$$

Chapman-Kolmogorov Equation for DTMC.

$$P_{ij}(n;m) = P[X_{n+m} = j | X_n = i] = \sum_{k} P_{ik}(n;v)P_{kj}(n+v;m-v)$$

 $i, j, k \in S$
 $n, m, v \in I$

A Markov chain is called (time) homogeneous if

$$P[X_{n+k} = j | X_n = i] = P[X_k = j | X_0 = i] = P_{ij}(0; k) = P_{ij}(k)$$

□ Matrix multiplication is associative (not commutative). $\rho(3) = \rho(2) \cdot P = \{\rho(1) \cdot P\} \cdot P = \rho(0) \cdot P \cdot P = \rho(0) \cdot P^3$

N-step transition probability matrix

n step system state

• $P(n) = P^n$

Ergodic MC limiting distribution

$$p(\infty) = \lim_{n \to \infty} p(0) \cdot P^n = \pi$$

steady state probability vector	, p(0)
---------------------------------	--------

p(0)	p(1)	p(2)	p(3)	p(4)	 p (_∞)
1	0.20	0.265	0.1805	0.20560	 0.215554
0	0.75	0.375	0.4350	0.37725	 0.380389
0	0.00	0.225	0.2025	0.21150	 0.190194
0	0.05	0.110	0.1170	0.12115	 0.116653
0	0.00	0.025	0.0650	0.08450	 0.097210

p(0)	p(1)	p(2)	p(3)	p(4)	 p()
0	0.30	0.15	0.204	0.1974	 0.215554
1	0.35	0.48	0.372	0.3900	 0.380389
0	0.30	0.21	0.228	0.2028	 0.190194
0	0.10	0.11	0.121	0.1193	 0.116653
0	0.00	0.05	0.075	0.0905	 0.097210

Computation of the Steady State Probability Vector

$$p(n) \cdot P = p(n+1) \qquad n \to \infty$$
$$\lim_{n \to \infty} p(n)P = \lim_{n \to \infty} p(n+1)$$
$$\pi P = \pi$$

Solving $\pi P = \pi$ with an extra equation $\sum_{i=1}^{n} \pi_i = 1$ gives π

(Why one more equation? Because $\pi P = \pi$ is not linearly independent)

$$\begin{bmatrix} \pi_1, & \pi_2, & \pi_3, & \pi_4, & \pi_5 \end{bmatrix} \begin{bmatrix} 0.20 & 0.75 & 0.00 & 0.05 & 0.00 \\ 0.30 & 0.30 & 0.30 & 0.10 & 0.00 \\ 0.00 & 0.55 & 0.40 & 0.05 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.50 & 0.50 \\ 0.60 & 0.00 & 0.00 & 0.00 & 0.40 \end{bmatrix} = \begin{bmatrix} \pi_1, & \pi_2, & \pi_3, & \pi_4, & \pi_5 \end{bmatrix}$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

$$\frac{1}{5}\pi_1 + \frac{3}{10}\pi_2 + \frac{3}{5}\pi_5 = \pi_1$$
$$\frac{3}{4}\pi_1 + \frac{3}{10}\pi_2 + \frac{11}{20}\pi_3 = \pi_2$$
$$\frac{3}{10}\pi_2 + \frac{2}{5}\pi_3 = \pi_3$$
$$\frac{1}{20}\pi_1 + \frac{1}{10}\pi_2 + \frac{1}{20}\pi_3 + \frac{1}{2}\pi_4 = \pi_4$$
$$\frac{1}{2}\pi_4 + \frac{2}{5}\pi_5 = \pi_5$$

Solve these simultaneous equations for all of the elements of π in terms of one of them. Since the equations are linearly dependent, we can omit one of them, and obtain the following solution.

$$\pi_1 = \frac{17}{30}\pi_2$$
, $\pi_3 = \frac{1}{2}\pi_2$, $\pi_4 = \frac{23}{75}\pi_2$, $\pi_5 = \frac{23}{90}\pi_2$

We can now substitute back into our normalization equation to get the value of π_2 .

$$\left(\frac{17}{30} + 1 + \frac{1}{2} + \frac{23}{75} + \frac{23}{90}\right)\pi_2 = 1$$
 , $\pi_2 = \frac{450}{1183}$

A model of a uniprogrammed computer system with 1 CPU, m I/O devices

The system will be in one of (m+1) states :

state 0 (CPU) or state i (I/0 on device i)

- Assume that the request for device i occurs at the end of a CPU burst with probability q_i
- Assume that a program finishes at the end of a CPU burst with probability,

$$q_{o,} \sum_{i=0} q_i = 1$$

No gap between programs

This DTMC is irreducible, recurrent and aperiodic. So it is ergodic and there exist the limiting probability distribution.

$$\pi = \pi p$$

$$\begin{cases}
\pi_0 = \pi_0 q_0 + \sum_{j=1}^m \pi_j \\
\pi_j = \pi_0 q_j & j = 1, 2, \dots, m \\
\sum_{j=0}^m \pi_j = 1
\end{cases}$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Solving the above $\pi_0 = \pi_0 \sum_{j=1}^m q_j = 1$ Since $\sum_{j=1}^m q_j = 1 - q_0$, $\pi_0 (1 + 1 - q_0) = 1$ $\therefore \pi_0 = \frac{1}{2 - q_0}$ $\pi_j = \pi_0 \cdot q_j = \frac{q_j}{2 - q_0}$ $j=1, 2, \dots, m$

In a real time interval T, the number of visits to device j will be π_j T on the average.

4. CTMC

Analysis of CTMC(continuous time Markov chain) is similar to that of DTMC except that the transitions can take place at any instance of time.

$$CTMC \quad \{X(t), t \ge 0\}$$

$$P[X(t) = x | X(t_n) = x_n, X(t_{n-1}) = x_{n-1}, X(t_{n-2}) = x_{n-2}, \dots, X(t_0) = x_0]$$

$$= P[X(t) = x | X(t_n) = x_n] \qquad for \quad t_0 < t_1 < \dots < t_n < t$$

The behavior of the Markov chain is characterized by

- ① Probability distribution of the initial state of the system
- The transition probability 2

$$\begin{split} \rho_{ij}(t_1, t_2) &= P\left[X(t_2) = j \mid X(t_1) = i\right] & t_1 < t_2 \\ &\to \text{Transition probability matrix } P(t_1, t_2) = \left[\rho_{ij}(t_1, t_2)\right] \\ \rho_j(t) &= P\left[X(t) = j\right] = \sum_i P\left[X(t) = j \mid X(t') = i\right] \cdot P\left[X(t') = i\right] \\ &= \sum_i \rho_{ij}(t', t) \cdot \rho_i(t') & t' < t_2 \\ &\to \text{State probability vector } p(t) \end{split}$$

Let
$$t_2 = t_1 + \Delta t$$

 $\rho(t) \cdot P(t, t + \Delta t) = \rho(t + \Delta t)$
 $\rho(t) \cdot P(t, t + \Delta t) - \rho(t) = \rho(t + \Delta t) - \rho(t)$
 $\rho(t) \cdot \{P(t, t + \Delta t) - I\} = \rho(t + \Delta t) - \rho(t)$
devide by Δt , $\rho(t) \frac{P(t, t + \Delta t) - I}{\Delta t} = \frac{\rho(t + \Delta t) - \rho(t)}{\Delta t}$(1)

For a sufficiently small Δt , define an infinitesimal matrix Q(t)

$$Q(t) \triangleq \lim_{\Delta t \to 0} \frac{P(t, t + \Delta t) - I}{\Delta t}$$

Then taking a $\Delta t \to 0$, (1) becomes
$$\rho(t) \lim_{\Delta t \to 0} \frac{P(t, t + \Delta t) - I}{\Delta t} = \lim_{\Delta t \to 0} \frac{\rho(t + \Delta t) - \rho(t)}{\Delta t}$$
$$\rho(t)Q(t) = \frac{d}{dt}\rho(t)$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Transition Rate Matrix

Transition Rate Matrix

Q(t)

Nondiagonal elements : parameters of the exponential probability density function for each state change.

Diagonal elements : sum of all the rates for changing from the current state to any other state, but with negative sign.

☐ If Q(t) is independent of t, it is called time homogeneous. Thus we get $\rho(t)Q = \frac{d}{dt}\rho(t)$

□ CTMC dose not have self-loop transitions.

State 1 state 0, state 2

state 0

$$: \frac{\mu_1}{\lambda_1 + \mu_1}$$

Steady State Probabilities

Kolmogorov Equations

$$\rho(t)Q = \frac{d}{dt}\rho(t)$$

U What is $\frac{d}{dt}\rho(t)$?

- Rate of the change of the state probability vector
- If t $\rightarrow \infty$, the system becomes stable and the rate of change becomes 0.

Let
$$\pi \triangleq \lim_{t \to \infty} \rho(t)$$
 then $\rho(t)Q = \frac{d}{dt}\rho(t) \to \pi Q = 0$

Example :

Steady state probabilities of the previous example $(\lambda_i = \lambda, \mu_i = \mu)$

$$\begin{bmatrix} \pi_0, \pi_1, \pi_2, \pi_3, \pi_4 \end{bmatrix} \begin{bmatrix} -\lambda & \lambda & 0 & 0 & 0 \\ \mu & -(\lambda + \mu) & \lambda & 0 & 0 \\ 0 & \mu & -(\lambda + \mu) & \lambda & 0 \\ 0 & 0 & \mu & -(\lambda + \mu) & \lambda \\ 0 & 0 & 0 & \mu & -\mu \end{bmatrix} = 0$$

$$-\lambda \pi_{0} + \mu \pi_{1} = 0$$

$$\lambda \pi_{0} - (\lambda + \mu)\pi_{1} + \mu \pi_{2} = 0$$

$$\lambda \pi_{1} - (\lambda + \mu)\pi_{2} + \mu \pi_{3} = 0$$

$$\lambda \pi_{2} - (\lambda + \mu)\pi_{3} + \mu \pi_{4} = 0$$

$$\lambda \pi_{3} - \mu \pi_{4} = 0$$

$$\pi_{0} + \pi_{1} + \pi_{2} + \pi_{4} = \pi_{4} = 1$$

Balance Equation

$$\frac{\partial}{\partial t}\rho_{k}(t) = \lambda_{k-1} \cdot \rho_{k-1}(t) - (\lambda_{k} + \mu_{k}) \cdot \rho_{k}(t) + \mu_{k+1} \cdot \rho_{k+1}(t)$$
$$\frac{\partial}{\partial t}\rho_{0}(t) = -\lambda_{0} \cdot \rho_{0}(t) + \mu_{1} \cdot \rho_{1}(t)$$

Steady state $p_k(t)$ 0 $0 = -(\lambda_k + \mu_k)\pi_k + \lambda_{k-1} \cdot \pi_{k-1} + \mu_{k+1} \cdot \pi_{k+1} \quad \dots \quad 0$ $0 = -\lambda_0 \cdot \pi_0 + \mu_1 \cdot \pi_1 \quad \dots \quad 0$

Rates of flow into a state = Rates of flow out of the state

$$\begin{bmatrix} \lambda_k \pi_k + \mu_k \pi_k & : \text{ flow out} \\ \lambda_{k-1} \pi_{k-1} + \mu_{k+1} \pi_{k+1} & : \text{ flow in} \end{bmatrix}$$

.

□ Balance equation ①, ②

$$\lambda_{\kappa}\pi_{\kappa} - \mu_{\kappa+1}\pi_{\kappa+1} = \lambda_{\kappa-1}\pi_{\kappa-1} - \mu_{\kappa}\pi_{\kappa} = \dots = \lambda_{0}\pi_{0} - \mu_{1}\pi_{1} = 0$$
$$\lambda_{0}\pi_{0} = \mu_{1}\pi_{1}$$

flow rate ,

flow

,

$$\pi_k = \frac{\lambda_{k-1}}{\mu_k} \pi_{k-1} = \frac{\mu_{k+1}}{\lambda_k} \pi_{k+1}$$

Example : Machine Breakdown

Consider a component with a constant failure rate λ . Upon failure, it is repaired with an exponential repair-time distribution of parameter μ . $MTTF = \frac{1}{\lambda}$, $MTTR = \frac{1}{\mu}$

Compute the steady-state availability of the component.

$$\pi = (\pi_U, \pi_D) \qquad \qquad Q = \begin{bmatrix} -\lambda & \lambda \\ \mu & -\mu \end{bmatrix}$$

From the balance equation,

$$\lambda \pi_U = \mu \pi_D$$
 $\therefore \pi_U = \frac{\mu}{\lambda} \pi_D$

Since $\pi_U + \pi_D = 1$, we get

Steady state availability $A = \pi_U$

$$=\frac{\mu}{\lambda+\mu}=\frac{\frac{1}{\lambda}}{\frac{1}{\lambda}+\frac{1}{\mu}}=\frac{MTTF}{MTTF+MTTR}$$

Markov Chains with Absorbing States

Markov chains with absorbing states

Absorbing states : a state that has incoming transitions only

Example

- Assume that we have a two-component parallel redundant system with a single repair facility with rate μ.
- The components have constant failure rate λ .
- When both components have failed, the system is considered to have failed and no recovery is possible.
- What is the reliability of the system?

Solution

 Let the state space be {0, 1, 2} where i represents the number of working components.

- This MC is not ergodic. What we need is transient analysis. Initial state distribution is required for the analysis.
- Assume that $p_2(0) = 1$, $p_1(0) = p_0(0) = 0$.

$$\frac{d}{dt}\rho_2(t) = -2\lambda\rho_2(t) + \mu\rho_1(t)$$
$$\frac{d}{dt}\rho_1(t) = -(\lambda + \mu)\rho_1(t) + 2\lambda\rho_2(t)$$
$$\frac{d}{dt}\rho_0(t) = \lambda\rho_1(t)$$

Taking Laplace transform
$$f(t) \rightarrow \overline{f}(s)$$

 $f(t)' \rightarrow s \cdot \overline{f}(s) - f(0)$
 $s \cdot \overline{\rho_2}(s) - \underline{\rho_2(0)}_{=1} = -2\lambda \overline{\rho_2}(s) + \mu \overline{\rho_1}(s)$

$$s \cdot \overline{\rho_1}(s) - \rho_1(0) = s \cdot \overline{\rho_1}(s) = -(\lambda + \mu)\overline{\rho_1}(s) + 2\lambda\overline{\rho_2}(s)$$

 $s \cdot \overline{\rho_0}(s) - \rho_0(0) = s \cdot \overline{\rho_0}(s) = \lambda\overline{\rho_1}(s)$

Solving the above equations for $\overline{\rho_0}(s)$, we get

$$\overline{\rho_0}(s) = \frac{2\lambda^2}{s\left\{s^2 + (3\lambda + \mu)s + 2\lambda^2\right\}}$$

After an inversion, we get $\rho_0(t)$, the probability that no components are operating at time t.

The system is up when 1 or 2 components are operating.

$$\therefore \mathbf{R}(t) = \rho_2(t) + \rho_1(t) = 1 - \rho_0(t)$$
$$MTTF = \int_0^\infty \mathbf{R}(t) dt$$

Queueing Theory

- 1. Classification of Queues
- 2. System Utilization
- 3. Little's Formula
- 4. M/M/1 Queue
- 5. M/M/m Queue
- 6. M/M/∞ Queue
- 7. M/M/1/L/N Queue
1. Classification of Queues

Notation of queues is based on five features

- 1. The distribution of time between arriving customers
- 2. The distribution of time to service a customer
- 3. The number of servers
- 4. The buffer size that can hold arriving customers
- 5. Population size

Types of time distribution

- M : Markovian (Memoryless, exponential distribution)
- D : Deterministic
- E_r : r-stage Erlang (r exponential distributed r.v.)
- H_r: r-stage hyperexponential
- G : General distribution

□ M/M/1/∞/∞ Arrival time dist/ service time dist/ no. of server/ buffer size/ pop. size M/M/1 **Poisson arrival** stream with u average rate λ queue(b server uffer)

□ Service policy

- 1. FCFS
- 2. LCFS
- 3. RR

4. PS (Processor Sharing) : RR with very small time quantum

- 5. Random
- 6. Priority
- 7. Others (SJF, SRTF,)

Priority Scheme

- 1. Non-preemptive : Arriving customer does not affect the customer in service
- 2. Preemptive-resume :
 - If an arriving customer has higher priority, the current customer in service is preempted
 - When the preempted customer begins service again, the service resumes where it left off
- 3. Preemptive-restart
 - If an arriving customer has higher priority, the current customer in service is preempted
 - When the preempted customer begins service again, the service <u>restarts</u> from the beginning as if no service had been received

Because of the memoryless property, preemptive resume and preemptive restart are identical for exponentially distributed service time.

2. System Utilization

Utilization

- The fraction of time a system is busy.
- Increased by the increase of the load on the system
- A bottleneck will decrease overall utilization

In a system characterized by a single server queue, the utilization is the fraction of time a server is busy.

: Sum of the time the system spends serving customer x_i divided by the total amount of time.

Utilization = P[system is busy] =
$$\lim_{N \to \infty} \frac{\sum_{n=0}^{N} x_n}{\sum_{n=0}^{N} a_n} = \lim_{N \to \infty} \frac{\sum_{n=0}^{N} \frac{x_n}{N}}{\sum_{n=0}^{N} \frac{a_n}{N}}$$

= $\frac{\overline{x}}{\overline{a}} = \frac{\text{mean service time}}{\text{mean interarrival time}}$
= $\frac{\frac{1}{\mu}}{\frac{1}{\lambda}} = \frac{\lambda}{\mu} = \frac{\text{arrival rate}}{\text{service rate}}$

 $\equiv \rho = \lambda \cdot \overline{x} = \lambda \cdot \text{mean service time}$

3. Little's Formula

Little's Formula holds for a broad variety of queuing systems.

- Any number of servers, any queuing discipline Any arrival, service time distribution
- Restriction : No job is created or destroyed within the system.

Example

- How many people are at McDonald's on the average?
- Observer at outside can figure it out without entering McDonald's
- Observe

32 customers arrive per hour on the average

each customer exits after 12 minutes on the average after he enters.

 $\lambda = 32/1 hour = 0.5333/1 min utes$ E[R] = 12 min utes $E[N] = \lambda \cdot E[R] = 0.5333 \frac{customers}{min ute} \times 12 min ute$ = 6.4 customers

4. M/M/1 Queue

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

 \Box How to compute π_k ? Using the fact that : $\pi_0 + \sum_{k=1}^{\infty} \pi_k = 1$, $\pi_0 + \sum_{k=1}^{\infty} \left(\frac{\lambda}{\mu}\right)^k \pi_0 = 1$ $\therefore \pi_0 = \frac{1}{1 + \sum_{k=1}^{\infty} \left(\frac{\lambda}{u}\right)^k}$ If $\mu > \lambda$, we can compute $\sum_{k=1}^{\infty} \left(\frac{\lambda}{\mu}\right)^{k} = \frac{\frac{\lambda}{\mu}}{1-\frac{\lambda}{\mu}} = \frac{\lambda}{\mu-\lambda}$ therefore $\pi_0 = \frac{1}{1 + \frac{\lambda}{\mu - \lambda}} = \frac{\mu - \lambda}{\mu} = 1 - \frac{\lambda}{\mu}$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Then $\pi_{\rm k}$ is

$$\pi_{k} = \left(\frac{\lambda}{\mu}\right)^{k} \pi_{0} = \left(\frac{\lambda}{\mu}\right)^{k} \left(1 - \frac{\lambda}{\mu}\right)$$

Geometric probability density function

 \Box System utilization ρ .

$$\rho = P[k > 0] = 1 - \pi_0 = \frac{\lambda}{\mu}$$
$$\therefore \pi_0 = 1 - \frac{\lambda}{\mu} = 1 - \rho$$
$$\pi_k = \left(\frac{\lambda}{\mu}\right)^k \pi_0 = \rho^k (1 - \rho)$$

Conditions for the ergodicity

- ① $\lambda < \mu$: system is ergodic
- $\bigcirc \ \lambda = \mu \ : recurrent \ null$
- $(3) \lambda > \mu$: transient

Condition for stability : $\lambda < \mu$ $\rho = \frac{\lambda}{\mu} < 1$

$$\pi_k = (1-\rho)\rho^k$$

Taking z - transform, we get

$$\prod^{*} (z) = \sum_{k=0}^{\infty} \pi_{k} \cdot z^{k} = \sum_{k=0}^{\infty} (1-\rho)(\rho z)^{k} = \frac{1-\rho}{1-\rho z}$$
$$E[N] = \frac{d}{dz} \prod^{*} (z)|_{z=1} = \frac{\rho(1-\rho)}{(1-\rho z)^{2}}|_{z=1} = \frac{\rho}{1-\rho}$$

☐ Average delay in the system (mean response time) From the Little's Formula $E[N] = \lambda \cdot E[R]$

$$E[R] = \frac{1}{\lambda}E[N] = \frac{1}{\lambda} \times \frac{\rho}{1-\rho} = \frac{1}{\mu(1-\rho)} = \frac{\frac{1}{\mu}}{1-\rho}$$

Average number of customers in service Let a r.v. C have 0 when no customer is in service and have 1 when the server is busy

$$P[C = 1] = \sum_{k=1}^{\infty} \pi_k = \sum_{k=1}^{\infty} (1 - \rho) \rho^k = 1 - \pi_0 = \rho$$
$$E[C] = 0 \cdot P[C = 0] + 1 \cdot P[C = 1] = \rho$$

Average waiting time in the queue excluding service time

 $E[\text{waiting time before service}] \triangleq W$ = Average delay in the system - Average service time $= E[R] - \frac{1}{\mu}$ $= \frac{\frac{1}{\mu}}{1-\rho} - \frac{1}{\mu} = \frac{\rho}{1-\rho} \cdot \frac{1}{\mu} = E[N] \times \text{ Average service time}$

Average number of customers in the queue

E[Average number in queue] \triangleq N_q

= Average number in the system - Average number in service

$$= E[N] - E[C]$$
$$= \frac{\rho}{1-\rho} - \rho = \frac{\rho^2}{1-\rho}$$

5. M/M/m Queue

A queuing system with arrival rate λ and m servers with rate μ each and a common queue

$$\mu_k = \begin{cases} k\mu & 0 \le k \le m \\ m\mu & m < k \end{cases}$$

$$\pi_{k} = \pi_{0} \prod_{i=0}^{k-1} \frac{\lambda}{(i+1)\mu} = \pi_{0} \left(\frac{\lambda}{\mu}\right)^{k} \frac{1}{k!} \qquad (k \le m)$$

$$\pi_{k} = \pi_{0} \prod_{i=0}^{m-1} \frac{\lambda}{(i+1)\mu} \prod_{j=m}^{k-1} \frac{\lambda}{m\mu} = \pi_{0} \left(\frac{\lambda}{\mu}\right)^{k} \frac{1}{m!m^{k-m}} \qquad (k > m)$$

Defining
$$\rho = \frac{\lambda}{m\mu}$$
 (the utilization of any individual server)
and using $\sum_{k=0}^{\infty} \pi_k = 1$ we get

$$\pi_{0} = \left[\sum_{k=0}^{m-1} \frac{(m\rho)^{k}}{k!} + \frac{(m\rho)^{m}}{m!} \frac{1}{1-\rho}\right]^{-1}$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Average number of customers in the system

$$E[N] = \sum_{k\geq 0} k \cdot \rho_{k} = m\rho + \rho \frac{(m\rho)^{m}}{m!} \frac{\pi_{0}}{(1-\rho)^{2}}$$

Average number of busy servers

Let a r.v. M denote the number of busy server $P[M = k] = \begin{cases} P[N = k] = \pi_k & 0 \le k \le m-1 \\ P[N \ge m] = \sum_{k=m}^{\infty} \pi_k = \frac{\pi_m}{1-\rho} & k = m \end{cases}$

Average number of busy servers,

$$E[M] = \sum_{k=0}^{m-1} k \cdot \pi_k + m \frac{\pi_m}{1 - \rho} = \frac{\lambda}{\mu}$$

 ρ , utilization of a server = $\frac{\text{Arrival rate to A server}}{\text{Service rate of A server}} = -\frac{\frac{\lambda}{m}}{\mu} = \frac{\lambda}{m\mu}$
 $E[M] = m\rho = \frac{\lambda}{\mu}$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Probability that an arriving customer is queued (Probability of congestion)

$$P[queuing] = \sum_{k=m}^{\infty} \pi_k = \pi_m + \frac{\lambda}{m\mu} \pi_m + \left(\frac{\lambda}{m\mu}\right)^2 \pi_m + \left(\frac{\lambda}{m\mu}\right)^3 \pi_m + \cdots$$
$$= \sum_{k=m}^{\infty} \rho^{k-m} \cdot \pi_m = \pi_m \sum_{j=0}^{\infty} \rho^j \stackrel{=}{=} \frac{\pi_m}{1-\rho}$$
$$= \frac{(m\rho)^m}{m!} \cdot \frac{\pi_0}{1-\rho}$$

Let R_S , R_C be the response time of the separate, common queuing scheme respectively.

Compare $E[R_S]$ and $E[R_C]$

Separate system : 2 independent M/M/1 queue with $\rho = \frac{\lambda}{2\mu}$ λ

Using the fact that
$$E[N_s] = \frac{\overline{2\mu}}{1 - \frac{\lambda}{2\mu}} \quad \left(=\frac{\rho}{1 - \rho}\right)$$
 and Little's Formula,

we get
$$E[R_s] = \frac{1}{\frac{\lambda}{2}} \cdot E[N_s] = \frac{2}{2\mu - \lambda}$$

Common queue : M/M/2 system

$$E[N_{c}] = 2\rho + \frac{\rho(2\rho)^{2}}{2!} \frac{\pi_{0}}{(1-\rho)^{2}} \qquad \rho = \frac{\lambda}{2\mu}$$
$$\pi_{0} = \left[1 + 2\rho + \frac{(2\rho)^{2}}{2!} \cdot \frac{1}{1-\rho}\right]^{-1} = \frac{1-\rho}{1+\rho}$$

Thus

$$E[N_{c}] = \frac{2\rho}{1-\rho^{2}}$$

$$E[R_{c}] = \frac{1}{\lambda}E[N_{c}] = \frac{4\mu}{4\mu^{2}-\lambda^{2}}$$

$$E[R_{s}] = \frac{2}{2\mu-\lambda} = \frac{4\mu+2\lambda}{4\mu^{2}-\lambda^{2}} > E[R_{c}]$$

 \therefore Common queue is better

6. M/M/∞ Queue

Infinite server queue : no queuing

□ A birth-death process with birth rate λ , but death rate is k × μ where k is the number of customers in the system.

$$\pi_{k} = \left(\prod_{j=1}^{k} \frac{\lambda}{j \times \mu}\right) \pi_{0} = \left(\frac{\lambda}{\mu}\right) \left(\frac{\lambda}{2\mu}\right) \left(\frac{\lambda}{3\mu}\right) \cdots \left(\frac{\lambda}{k\mu}\right) \pi_{0}$$
$$= \frac{1}{k!} \left(\frac{\lambda}{\mu}\right)^{k} \pi_{0}$$

$$\pi_{0} = \frac{1}{1 + \sum_{k=1}^{\infty} \frac{1}{k!} \left(\frac{\lambda}{\mu}\right)^{k}} = \frac{1}{\left(\frac{\lambda}{\mu}\right)^{0}} + \sum_{k=1}^{\infty} \frac{\left(\frac{\lambda}{\mu}\right)^{k}}{k!}} = \frac{1}{\sum_{k=0}^{\infty} \frac{\left(\frac{\lambda}{\mu}\right)^{k}}{k!}}$$
$$= \frac{1}{\frac{\lambda}{e^{\frac{\lambda}{\mu}}}} = e^{-\frac{\lambda}{\mu}}$$
$$\pi_{k} == \frac{1}{k!} \left(\frac{\lambda}{\mu}\right)^{k} e^{-\frac{\lambda}{\mu}}$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

- M/M/1 Queue with a finite amount of storage (L) and a finite population (N)
- In the case of finite population, it is assumed that each individual attempts to join the queue as an independent Poisson process with parameter λ.

(If there are n individuals, the aggregate arrival rate is n λ)

□ Assume L<N. (If L≥N, the queues is equivalent to $M/M/1/\infty/N$ Queue)

$$\pi_{0} = \frac{1}{1 + \sum_{j=1}^{L} \frac{N!}{(N-j)!} \left(\frac{\lambda}{\mu}\right)^{j}}$$

$$\pi_{k} = \frac{\frac{N!}{(N-k)!} \left(\frac{\lambda}{\mu}\right)^{k}}{1 + \sum_{j=1}^{L} \frac{N!}{(N-j)!} \left(\frac{\lambda}{\mu}\right)^{j}} = \frac{\frac{N!}{(N-k)!} \left(\frac{\lambda}{\mu}\right)^{k}}{\sum_{j=0}^{L} \frac{N!}{(N-j)!} \left(\frac{\lambda}{\mu}\right)^{j}} = \frac{\frac{\left(\frac{\lambda}{\mu}\right)^{k}}{(N-k)!}}{\sum_{j=0}^{L} \frac{\left(\frac{\lambda}{\mu}\right)^{j}}{(N-j)!}}$$

Networks of Queues

- 1. Tandem Queues
- 2. Open Queuing Networks
- 3. Closed Queuing Network
- 4. General Network Model

1. Tandem Queues

- Two types of networks : Open and Closed
 - An open queuing network is characterized by one or more sources of job arrivals and correspondingly one or more sinks that absorb jobs departing from the network.

In a closed queuing network, jobs neither enter nor depart from the network.

□ The behavior of jobs within the network is characterized by

- the distribution of job service times at each center
- the probabilities of transitions between service centers
- For each center the number of servers, the scheduling discipline, and the size of the queue must be specified.
 - For an open network, a characterization of job-arrival processes is needed.
 - For a closed network, the number of jobs in the network must be specified.

- The changes of state occur upon a completion of service at one of the two servers or upon an external arrival.
- Since all inter event times are exponentially distributed (by our assumptions), the underlying stochastic process is a Markov chain with the state diagram shown in the following.

□ Let $p(k_0, k_1)$ be the joint probability of k_0 jobs at node 0 and k_1 jobs at node 1 in the steady state.

 Equating the rates of flow into and out of the state, we obtain the following balance equations :

$$(\mu_0 + \mu_1 + \lambda) \rho(k_0, k_1) = \mu_0 \rho(k_0 + 1, k_1 - 1) + \mu_1 \rho(k_0, k_1 + 1) + \lambda \rho(k_0 - 1, k_1), \quad k_0 > 0, \quad k_1 > 0$$

For the boundary states, we have:

$$\begin{pmatrix} \mu_{0} + \lambda \end{pmatrix} \rho(k_{0}, 0) = \mu_{1}\rho(k_{0}, 1) + \lambda\rho(k_{0} - 1, 0), & k_{0} > 0, \\ (\mu_{1} + \lambda) \rho(0, k_{1}) = \mu_{0}\rho(1, k_{1} - 1) + \mu_{1}\rho(0, k_{1} + 1), & k_{1} > 0, \\ \lambda\rho(0, 0) = \mu_{1}\rho(0, 1)$$

The normalization is provided by :

$$\sum_{k_0 \ge 0} \sum_{k_1 \ge 0} \rho(k_0, k_1) = 1$$

Therefore the solution of the above relations is:

$$\rho(k_0, k_1) = (1 - \rho_0) \rho_0^{k_0} (1 - \rho_1) \rho_1^{k_1}, \qquad (1)$$

where $\rho_0 = \lambda / \ \mu_0$ and $\rho_1 = \lambda / \ \mu_{1.}$

□ The condition for stability of the system is that both ρ_0 and ρ_1 are less than unity.

□ The node labeled 0 is an M/M/1 queue.

$$P(N_0 = k_0) = \rho_0(k_0) = (1 - \rho_0)\rho_0^{k_0}.$$

 Burke's theorem[1956] says that the departure process of an M/M/1, M/M/c, or M/M/∞ queue is also Poisson with rate λ.

Therefore, the second queue is also an M/M/1 queue.

$$P(N_1 = k_1) = \rho_1(k_1) = (1 - \rho_1)\rho_1^{k_1}.$$

□ The solution in Equation (1) becomes:

$$\rho(k_0, k_1) = (1 - \rho_0) \rho_0^{k_0} (1 - \rho_1) \rho_1^{k_1} = \rho_0(k_0) \rho_1(k_1).$$

This is the product form solution meaning the product of the marginal probabilities p₀(k₀) p₁(k₁); hence random variables N₀(t) and N₁(t) are independent at the same time instance. (Are they independent random processes? NO!)

This product form solution can be generalized to an *m*-stage tandem queue.

2. Open Queuing Networks

- □ If a queue is visited more than once(there is a feedback), then the arrival process to that queue will not be Poisson.
- The product-form solution of tandem queues can be generalized to any feed-forward network of exponential queues that is fed from independent Poisson sources.
- Jackson's theorem [1957]
 - The numbers of customers in the queues at time t are independent random variables.
 - The steady state probabilities of the individual queues are those of an M/M/c (M/M/1, M/M/∞) system.

• Let the steady state pmf of the queueing network be N(t).

For any possible state $n = (n_1, n_2, n_3, \dots n_K)$

 $P[N(t) = n] = P[N_1(t) = n_1] \times P[N_2(t) = n_2] \times P[N_3(t) = n_3] \times ... \times P[N_K(t) = n_K]$

Consider a simple model of a computer system

 Jackson's theorem says that two queues will behave like independent M/M/1 queues, so

$$p(k_0, k_1) = (1 - \rho_0) \rho_0^{k_0} (1 - \rho_1) \rho_1^{k_1}, \qquad (2)$$

$$\rho_0 = \lambda_0 / \mu_0, \ \rho_1 = \lambda_1 / \mu_1$$

Fig. 1 A model of a computer system

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

To apply this result, we have to compute the average arrival rates λ_0 and λ_1 into \blacklozenge the two nodes :

$$\lambda_0 = \lambda + \lambda_1$$
$$\lambda_1 = \lambda_0 p_1$$

$$\lambda_0 = rac{\lambda}{1 - \rho_1} = rac{\lambda}{
ho_0}$$
 and $\lambda_1 = rac{
ho_1 \lambda}{
ho_0}$

$$\rho_0 = rac{\lambda}{
ho_0 \mu}_0 \quad \text{and} \quad \rho_1 = rac{
ho_1 \lambda}{
ho_0 \mu}_1$$

$$E[N_0] = \frac{\rho_0}{(1-\rho_0)}, \quad E[N_1] = \frac{\rho_1}{(1-\rho_1)}$$

If we let B₀ denote the total CPU service requirement of a program, then E[B₀]=1/(p₀ μ₀), the mean service time at the equivalent server. Similarly, E[B₁]= p₁/(p₀ μ₁).

• If $\rho_0 > \rho_1$, then E[B₀] > E [B₁]. This means the CPU is the bottleneck, the system is said to be CPU-bound.

Similarly, if $\rho_0 < \rho_1$, then the system is I/O-bound.

(c) The same "equivalent" network without feedback

The average response time may be computed by summing the average number of jobs the two nodes and then using Little's formula:

$$E[R] = \left(\frac{\rho_{0}}{1-\rho_{0}} + \frac{\rho_{1}}{1-\rho_{1}}\right) \frac{1}{\lambda} = \frac{\left(\frac{1}{\rho_{0}\mu_{0}}\right)}{1-\lambda\left(\frac{1}{\rho_{0}\mu_{0}}\right)} + \frac{\left(\frac{\rho_{1}}{\rho_{0}\mu_{1}}\right)}{1-\lambda\left(\frac{\rho_{1}}{\rho_{0}\mu_{1}}\right)} = \frac{E[B_{0}]}{1-\lambda E[B_{0}]} + \frac{E[B_{1}]}{1-\lambda E[B_{1}]}$$
(3)

U We know that a single queue has the following relation.

$$E[R] = \frac{1}{\lambda}E[N] = \frac{1}{\lambda} \cdot \frac{\rho}{1-\rho} = \frac{\frac{1}{\mu}}{1-\rho} = \frac{\frac{1}{\mu}}{1-\lambda\left(\frac{1}{\mu}\right)}$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

- Therefore Equation (3) gives the average turnaround time of the tandem network without feedback shown in Fig 1 (b).
- To determine E[R] and E[N], it is sufficient to know only the aggregate resource requirements of a job. Details of the pattern of the resource usage are not important for computing these average values.
- Figure 1(a) and 1(b) does not hold with respect to the distribution function F_R(x) of the response time.
- □ Jackson's result applies in even greater generality.
- Requirement of Jacksonian product form solution
 - The queueing network has the external Poisson arrival process.
 - Each queue has FCFS service policy.
 - Service times of each queue are independent each other.
 - Even if each queue of the open queuing system does not have Poisson process for input and output, we can still have product form solution.

- Consider an open queuing network with (*m*+1) nodes, where the *i*th node consists of c_i exponential servers each with mean service time of 1/μ₁ seconds.
 - Jackson's theorem states that each node behaves like an independent M/M/c_i queue and, therefore, the steady-state probability of k_i customers at node *i*, *i* = 0, 1,, *m* is given by the product from:

 $p(k_0, k_1, \dots, k_m) = p_0(k_0) \dots p_m(k_m),$

• where $p_i(k_i)$ is the steady-state probability of finding k_i jobs in an M/M/ c_i queue with input λ_i and with average service time 1/ μ_1 for each of the c_i servers.

3. Closed Queuing Network

- \Box Let us now assume a large value of λ , so that the probability that there is at least one customer in the job scheduler queue is very high.
- We may then assume that the departure of a job immediately triggers the scheduling of an already waiting job into main memory.
- Consider a cyclic queuing model shown in Fig. 2.
 - Represent the state of the system by a pair, (k₀, k₁) where k_i denotes the number of jobs at node *i* (*i* = 0, 1).
 - $\mathbf{k}_0 + \mathbf{k}_1 = \mathbf{n}$ is the degree of multiprogramming.
 - The dot pattern on the line k₀ + k₁ = n of Fig. 3 is the finite-state space of the cyclic (closed) queuing network.

□ If we let $\rho_0 = a/\mu_0$ and $\rho_1 = ap_1/\mu_1$, where *a* is an arbitrary constant, that the steady-state probability $p(k_0, k_1)$: (by Gordon & Newell)

$$p(k_0, k_1) = \frac{1}{C(n)} \rho_0^{k_0} \rho_1^{k_1}$$

The normalizing constant C(n) is chosen so that :

$$\sum_{\substack{k_0+k_1=n\\k_0,k_1\geq 0}} p(k_0,k_1) = 1.$$

• The choice of the constant *a* is quite arbitrary in that the value of $p(k_0, k_1)$ will not change with *a*, although the intermediate values ρ_0 , ρ_1 , C(n) will depend upon *a*.

- Two popular choices of the constant *a* are a = 1 and $a = \mu_0$.
- Choosing $a = \mu_0$ we have $\rho_0 = 1$ and $\rho_1 = \mu_0 \rho_1 / \mu_1$.

$$p(k_0, k_1) = \frac{1}{C(n)} \rho_1^{k_1}.$$

Using the normalization condition, we get :

$$1 = \frac{1}{C(n)} \sum_{k_1=0}^{n} \rho_1^{k_1} = \frac{1}{C(n)} \frac{1 - \rho_1^{n+1}}{1 - \rho_1}$$

$$C(n) = \begin{cases} \frac{1 - \rho_1^{n+1}}{1 - \rho_1}, & \rho_1 \neq 1\\ n + 1, & \rho_1 = 1. \end{cases}$$

$$C(n) = \sum_{A} \prod_{i=0}^{m} \rho_i^{k_i} \qquad A: \sum k_i = n, k_i \ge 0.$$

- By direct evaluation
- By using generating function

 \Box Now the CPU utilization U₀ may be expressed as :

$$U_0 = 1 - p(0, n) = 1 - \frac{\rho_1^n}{C(n)},$$

$$U_{0} = \begin{cases} \frac{\rho_{1} - \rho_{1}^{n+1}}{1 - \rho_{1}^{n+1}}, & \rho_{1} \neq 1 \\ \frac{n}{n+1}, & \rho_{1} = 1. \end{cases}$$

□ The average throughput is given by:

$$E[T] = \mu_0 \rho_0 U_0$$

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

4. General Network Model

More general queuing network that have been found to have a product-form solution.

 Chandy, Howard, Towsley 1977, Chandy and Yeh 1978, Lam 1977, Kleinrock 1975, Kobayashi 1978,

 Any differentiable service-time distribution can be allowed at a node, provided that the scheduling discipline at the node is PS (processor sharing) or LCFS-PR.

- Any differentiable service-time distribution can also be allowed at a node with ample servers. (no queuing needed)
- Networks with multiple job types can be analyzed.

Stochastic Petri Nets

1. 2. 3. Petri Net

Non state-space model

- System component
- Inter-dependency, concurrency, resource contention
- Product form queueing network
- Series-parallel graphs
- Fault-tree
- Reliability graph

State-space model

- State machine
- Markov models
- Petri nets

Why Markov Models ?

Markov model

Largeness problem

- Automatic state space generation : Stochastic Petri nets, high level languages
- Efficient numerical solution technique
- Model decomposition
- Model approximation(simplification)
- Exponential assumption
 - Non-homogeneous Markov process
 - Semi-Markov process
 - Markov regenerative process
 - Approximation of non-exponential distributions by PH-type expansion
 - Largeness problem
 - Discrete-event simulation
- Needs
 - Stochastic Petri nets for
 - (Non-exponential event times with)
 - Analytic solution methods

"Abstract and Formal Model of Information Flow"

"Bipartite Directed Graphs Consisting of Places and Transitions"

Petri Nets, PN=(P,T,A,C,M0)

(1) 가 가

(2)р1 ParBegin t5 t1 рЗ p2 р6 t2 t3 р4 р5 ParEnd t4

- Sequential execution(ordering)
- Concurrency, parallelism
- Synchronization
- Asynchronous activities
- Contention
- Non determinism
- Interdependency
- Hierarchical modeling

transition Markov model Markov model Petri nets → Reachability graph Reachability graph → Reduced reachability graph

4. Markov model

- (1) Solve Markov model : state probabilities
- (2) Compute performance metrics with reward parameters

Markov Models

- Deterministic Timed Nets : (Generalized) Timed Petri Nets
- Stochastic Petri Nets(SPN) CTMC
- Generalized SPN(GSPN) CTMC
- Discrete Time SPN DTMC
 - EXP(GEO) distributed firing times
- Extended SPN(ESPN) SMP
 - EXP and GEN distributed firing times
 - Reduced reachability graph must have Markov property each time when marking change occurs.
- Deterministic & SPN(DSPN) MRGP
 - EXP and DET distributed firing times
 - At most one DET transition can be enabled in a marking.
- Markov Regenerative SPN(MRSPN) MRGP
 - EXP and GEN distributed firing times
 - At most one GEN transition can be enabled in a marking.

Producer-Consumer System Model

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Fault-Tolerant SW Model

Model of a Simple Client-Server System

3. Petri Nets

Reachability Graph

Reduced Reachability Graph

CTMC

Infinitesimal Generator Matrix

Solution Methods

Solve Markov reward models

- r=(r1, r2, r3, . . . , r10) : vector of reward rate for each state
- expected steady state reward $E[X] = \sum_{i \in S} r_i \pi_i$

• expected transient(instantaneous) reward rate $E[X(t)] = \sum_{i=0}^{\infty} r_i p_i(t)$

• expected accumulated reward $E[Y(t)] = \sum_{i \in S} \int_{0}^{t} r_{i} p_{i}(\tau) d\tau$

가 ()

- Mean probability of the server's being idle
- Mean probability of a specific client's being idle
- Mean response time at a client station
- Mean number of requests at the server
- Mean number of requests in the server's buffer
- Mean number of requests processed per second
 - Throughput of the server
 - Expected firing rate of the transition t4

$$E[X] = \sum_{i \in S} r_i \pi_i$$

• if t4 is enabled, $r_i = \eta$

• if t4 is not enabled, r = 0

Throughput

- Example for 5 clients, 1 server system
- □ Mean length of request packet = 125 bytes/packet (1/ μ)
- □ Mean length of response packet = 4 Kbytes/packet $(1/\beta)$
- □ Mean polling time = 0.004ms $(1/\gamma)$
- □ Mean service time = $2ms(1/\eta)$
- **Q** Request generation rate (λ) : variable
- $\label{eq:rescaled} \mbox{Offered load}, \quad \rho = \lambda (\ 1/\mu + 1/\eta \)$

Throughput

Introduction to Simulation

- 1. Designing Simulation Model
- 2. Programming Simulation
- 3. Analyzing Simulation Results

1. Designing Simulation Model

- □ A study of actions that mimics some reality.
- Probability based simulation
- Probability based simulations use Monte Carlo method.
- Steps of simulation
 - Designing simulation model
 - Programming simulation model
 - Analyzing simulation results
- Simulations are complicated programs that will execute for a large number of iterations.
- Need to decide
 - Simulation method : physical simulation or Monte Carlo simulation
 - Model type
 - Characteristics of parameters
 - Model size
 - Simulation time (Number of iterations)

Types of simulation models

- Static model : States and characteristics of the model do not change over time.
 Represents a system at a particular point in time. (Monte Carlo simulation)
 Dynamic model : States and characteristics of the model change over time.
- Deterministic model : Does not contain stochastic variables.
 - Known(deterministic) set of inputs that result in a unique set of outputs
 - Ex) Known input : arrivals of patients at the scheduled appointment time.
 - Stochastic model : Contains stochastic variables.
- Discrete model : System variables change in a discontinuous way over time.
 Ex) a bank
- Continuous model : System variables change continuously over time.
 - Ex) a dam, a worm object losing its heat to the air
- Combined model : Some variables are discrete and some are continuous.
 - Ex) a dam with water gates to outflow

Generating Random Numbers of Uniform Distribution

- In order to have a computer program to simulate a stochastic process, we need to generate numbers that represent values of random variables of events.
- Need algorithms to generate numbers randomly and independently based on some distribution.
- No generation algorithm can produce truly random numbers.
 - : repeat of sequence of numbers

Linear Congruential Method

Zi : random numbers a,c,m : constant

Z1=7, a=9, c=11, m=50
 Z2= (9*7 + 11) mod 50= 24
 Z3= (9*24 +11) mod 50 = 27

Mixed Congruential Method

The linear congruential method with c > 0

 $Z(n+1) = (a*Zn+c) \mod m$

Multiplicative Congruential Method The linear congruential method with c = 0 Periodic sequence appears sooner than the linear congruential method) Z1=13, a=9, m=16 Z2 = (9*13) mod 16 = 5 Z3 = (9*5) mod 16 = 13 Z4 = (9*13) mod 16 = 5 UNIX's rand() uses this method with period 2^32 that returns successive pseudo-random numbers in the range from 0 to (2^15)-1. Additive Congruential Method

- A new number is generated by the last generated number to the k-th previous number
- Zn = (Z(n-1) + Z(n-k)) mod m

Midsquare method

- Take the middle digits of the square of a number
-) a number 12 ---> the square 0144 ---> the random number 14

Generating Non-uniform Random Numbers

■ Exponentially distributed random numbers • Y~EXP(λ) Z~UNIFORM(0,1) y= (-1/ λ)*ln (1-z) $F_Y(y) = P[Y \le y] = P[-\lambda^{-1} \ln(1-z) \le y]$ $= P[\ln(1-z) \ge -\lambda y]$ $= P[1-z \ge e^{-\lambda y}]$ $= P[z \le 1 - e^{-\lambda y}]$ $= F_Z(1 - e^{-\lambda y})$

Since Z is uniformly distributed over (0,1), $F_Z(z)=z$, $0 \le z \le 1$. Thus :

$$F_Z \left(1 - \mathrm{e}^{-\lambda y} \right) = 1 - \mathrm{e}^{-\lambda y}$$

• Therefore, Y is exponentially distributed with parameter λ .

Random numbers of Poisson distribution

N~POI(λ, t) T~EXP(λ)

Count the number of exponentially distributed random variables needed to add up t.

- Random numbers of Geometric distribution
 - N~GEO(p) p:failure probability Z~UNIFORM(0,1)
 - Count the number of times that we generate uniformly distributed random numbers until we get a number greater than p.

2. Programming Simulations

Basic structures of simulation programs

- 1. Time-based simulation
- 2. Event-based simulation

Time-based simulation

- Program control loop is associated with time.
- Simple but inefficient.
- Basic structure : Figure 1

Event-based simulation

- Execution of the main control loop represents a single event.
- Need event queue to maintain the information to decide which event is next.
- Complex but efficient and accurate.
- Basic structure : Figure 2

Figure 1 Control Flow of Time-Based Simulation

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

Chungnam National Univ. / Distributed Systems Lab. / H. CHOI

```
Simulation program of M/M/1 queuing system
main() {
   double Ta=200.0, Ts=100.0, te=200000.0, t1,t2,time;
   double expntl();
   int n:
   n=0; t1=0.0; t2=te; time=0.0;
   while (time < te) {
          if (t1 < t2) { /* arrival event */
                   time=t1; n++; t1=time+expntl(Ta); /* t1:arrival time of next job */
                   if (n==1) t2=time+expntl(Ts);
                                                             /* t2:service time of this job */
                           /* service completion */
          else {
                   time=t2; n--; /* decrease the number of customers in the sy */
                   if (n > 0) t2=time+expntl(Ts); else t2=te; /* let next event be arrival */
          }
double expntl(t) double t; {
   double ranf();
   return( -t*log( ranf() ) );
}
```


Accumulating Statistics

- Since traces are voluminous, it is required to provide summary statistics about a simulation.
 - Adding program segments for the accumulation of statistics in a simulation program.
 - Calculating mean, standard deviation, pdf(histogram), accumulation of a specific statistics.
- Cannot get the additional statistics without re-running the simulation.
- Potential numerical problems

Simulation Tools

SIMSCRIPT

- The first version by RAND Corp. In the early 1960s.
- The recent version is SIMSCRIPT II.5 by CACI Product Company(1994).
- MODSIM(Modern Simulator)
 - Developed by CACI based on object-oriented concepts.
 - Newer version is named SIMOBJECT.
- GASP IV
 - A collection of library routines written in FORTRAN.
- GPSS(General Purpose Simulation System)
 - IBM developed the first version in 1961 and the last version in 1970(GPSS V).
 - GPSS/H by Wolverine Software ('77), GPSS/PC by Minuteman Software('84)
- SLAM(Simulation Language for Alternative Modeling)
 - Evolved from GASP.
- Other tools
 - SIMAN, EZSIM, Sim++, DEVSIM++, SIMNET, SIMFACTORY, COMNET, OPNET, BONES,

Simulation languages

- Special purpose simulation language : PAWS, SCERT II, RESQ
- General purpose programming language : C++, C, FORTARN, Pascal
- General purpose simulation language : GPSS, SIMSCRIPT II.5, Simula
- Simulation tools
 - GPSS (General Purpose Simulation System)
 - CPSim, POSES++, EZSIM, DEVSIM++, Sim++, SHARPE, SLAM II
 - OPNET, Bones
 - COVERS
 - And many others.....

3. Analyzing Simulation Results

Problems in analyzing simulation results

- How to determine the accuracy of the reported statistics?
- How to determine the duration of the simulation run?
- Startup transients : unusual pattern before the simulation reaches steady state
- Repeated runs with same starting values for variables : identical events and statistics.

Central limit theorem

- The mean of a sample of *n* mutually independent random variables drawn from a population that has a mean of μ and a variance of σ^2 , is approximately distributed as a with a mean of μ and σ^2 .
- If the simulation runs or batches of a simulation run are long enough, the output variables tend toward a normal distribution.
- How long is enough is not easy to determine, it is application dependent.

Sample mean

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Confidence intervals

 If the collection of *n* output values are independent and identically distributed with a normal distribution, then the actual mean μ would fall with probability *p* within an confidence interval ±ε (*p*: confidence level, confidence coefficient).

$$\mathsf{P}[\overline{x} - \varepsilon < \mu < \overline{x} + \varepsilon] = \rho$$

 $\diamond \epsilon$ is given by the Student-*t* distribution normalized by the experimental variance s

$$\mathcal{E} = \mathbf{t}_{(n-1,p)} \times \sqrt{\left(\frac{\mathbf{s}^2}{n}\right)}$$

) 950 \pm 30 with confidence level 0.95 45.5 % \pm 3 % with confidence level 0.92

