
Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 1

Introduction to Modeling

1. What is a model?
2. Modeling Methodologies
3. Modeling a Computer
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1.  What is a Model?

Model : a representation that mimics another object under study.
Physical, logical, functional representation.
Modeling : 모델화하는것. 시스템을모형화하여분석하여우리가시스템에대해
알고자하는사항들을도출해내는것

The particular features of  the model that are implemented depends 
on the user’s requirements and desires.          

Ex : a toy airplane, a model house, 건축물모형, ...
The particular features of the model are represented.
Simple, easier, cheaper to understand the real object
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Kinds of models
1. Physical model 

Physical outlook of an object
Model is constructed out of plastic, wood, metal, ...
Its operation follows the same mechanisms 
예) toy airplane, 의상모델, 건축물모형

2. Simulation model
Mimics real behavior of the object 
Manipulation of values that represent physical observation
예) war game, 전자오락자동차경주, 은행이용방식

3. Analytical  model
Does not represent operations that mimics the behavior of the object
Mathematical operations to capture the relationships
예) 은행이용방식중고객의대기시간분석
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2. Modeling Methodologies

Performance modeling method
1. measurement and empirical models 
2. simulation(models)
3. analytic models

Empirical modeling
장점

정확, 실제적모델(가정이거의없음)

단점

시스템구현후가능

데이터수집까지장시간소요

고비용

측정된데이터자체는정확하나포괄적이지못함
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Simulation modeling
장점

모델수립이비교적용이

시스템구현전에적용가능

부분적으로포괄적

동작및절차를표현하는데적합

단점

시뮬레이션반복회수에따라정확성좌우→장시간소요→ expensive
입력변수변경시완전재수행

모델수립시세부동작은생략 (모델의부정확)
모델실행시확률적가정에의지

시뮬레이션툴필요
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Analytic modeling
장점

모델의입력변수변경시신속수행

시스템구현전적용가능

포괄적

수학적모델의해석,  정확성
가장저렴한방법

단점

모델수립의어려움(수학적 skill)
모델수립시세부동작은생략 (모델의부정확)
모델수립시확률적가정에의지
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3.  Modeling a Computer

Computer system
Consists of many components
Complex, but fast operations
A large volume of input and output, system states             

→ Needs simplified model to understand

Level of modeling
Overly simplified model for a casual user
Complex and detailed model for computer engineers               

→ needs a formal way to describe complex
models correctly and efficiently

examples of formal modeling techniques
Formal Description Techniques, Simulation Languages, State Transition 
Diagram, Mathematical Equations.
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The computer performs many operations in a period of time,
so its actions are similar to physical processes.

→ These physical processes are termed stochastic
since they appear randomly as a function of time.

A stochastic model is different from other models.
It models systems that will have many possible outputs for a single   
set of inputs

What to model for a computer
Performance
Reliability
Operations
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Performance Measures

Performance Measures
Measure Units Potential Use

Throughput

Capacity

Response time

Utilization

Reliability

Availability

Speedup

Backlog

Processes/unit time

Processes/unit time

Units of time

Percent of time
Mean time to fail, Probability

Percent of time

Number of effective PUs

Number of processes

Productivity evaluation

Planning

Usability evaluation

Configuration

Maintenance scheduling

Usability evaluation

Configuration

Usability evaluation
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Workload Parameters

Workload Parameters
Parameter Units Potential Variations

Interarrival time

Task size

I/O request rate

I/O service rate

Memory size

Task mix

Parallelism

Unit of time

Unit of time

Number per unit time

Number per unit time

Kilobytes per task

Number of tasks

Percent of program

Change the offered load

Amount of processing

Type of processing

I/O device type

Multiprogramming level

Interactive/batch

Vector/sequential
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Probability Theory

1. Definition
2. Basic Models
3. Combinatorics
4. Random Variables
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1.  Definition

Probability theory : a mathematical model that represents the relative 
frequency of an outcome for an infinite number of repetitions of the 
experiment.

relative frequency      
number of observations of an outcome

number of repetitions of the experiment
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Actual type of measurement for both the inputs and outputs of a 
process depend on the environment

Two basic types of environment

1. Discrete environment
Countable outcomes, a finite or countably infinite number of outcomes
ex) Coin flipping, dice tossing, number of humans

2. Continuous environment
Uncountably infinite number of possible outcomes
ex) Room temperature
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2.  Basic Models

Def. 1
An element is an instance of an object of interest.

Def. 2
A set is a collection of distinct elements.

c.f. : A bag is a collection of elements.

(예)  {1, 2, 3}   {m|m=2n, n= 1, 2, ····} : even number
{{1,2}, 3}   { } : null set
{ 0, 1, 2, 3, ····} countably infinite number of elements
{ x | x∈ [0,1]} uncountably infinite number of elements
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Def. 3
The union of two sets A and B contains all elements found in either of the two sets.
(예)  A={1, 2},    B={3, 4, 5}           A ∪ B={1, 2, 3, 4, 5}

Def. 4
The intersection of two sets A and B contains only elements that appear in both sets.
(예)  A={1, 2, 3},  B={3, 4}        A ∩ B={3}

Def. 5
A set A is a subset of a set B if all the elements in the set A are also in the  set B.
(예)  A={1, 2, 3, 4, 5},  B={3, 4}      A ⊃ B



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 16

Def. 6
The complement of a set is the set of all elements in the universe(모집단, Ω,가능한
모든 element 로된집합) that are not in the set.

Def. 7
Two sets A and B are mutually exclusive (disjoint) 
if they have no elements in common (A∩B =    ).

Def. 8
Two sets A and B are mutually exhaustive if A∪B= Ω.

Def. 9
Two sets A and B partition the universal set Ω
if they are both mutually exclusive (A∩B =   )
and mutually exhaustive (A∪B= Ω).

( ) = {1, 2, 3, 4, 5}     A= {1, 2},   A= {3, 4, 5}예 Ω
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Laws of Set Theory

Laws of Set Theory
1. Commutative A B B A

A B B A

I I

U U

=
=

2. Associative A B C A B C

A B C A B C

I I I I

U U U U

( ) ( )

( ) ( )

=
=

3. Distributive A B C A B A C

A B C A B A C

I U I U I

U I U I U

( ) ( ) ( )

( ) ( ) ( )

=
=

4. Identity A A

A A

I

U

Ω =
=  

5. Inverse ( )′ ′ =A A

6. DeMorgan’s ( )

( )

A B A B

A B A B

I U

U I

′ = ′ ′
′ = ′ ′

7. Exclusion A AI ′ =

Table 2.1
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Def. 10

The sample space for an experiment is the set of all possible outcomes.
(예) Example of flipping a coin,     S={H, T}

Def. 11

An event is a set of outcome. (subset of the sample space)
(예) S={HH, HT, TH, TT}

events : {HH, HT, TH, TT},   {HT, TH},   {HH}
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Laws of Probability

Def 12
For an sample space Ω, a probability measure P is a function defined on all 
the subsets of Ω such that :                

1. P[Ω]=1
2. For any event  A⊂Ω, then P[A] ≥ 0
3. For any events  A, B ⊂Ω where  A∩B =    , then

P[A∪B] = P[A] + P[B]
3’. For mutually disjoint events Am, 

[ ]∑
∞

=

∞

=
=





11 m
mmm

APAUP
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(예) Probability measures are functions that give real values between 0 and 1.

Conditional Probability

A situation : A model of a process has been established with its sample space and its 
probability measure.

The sample space  is too general.
A condition should be added to the model to restrict the possible outcomes.

( ) For A, A   such that = A A  and, A A =      ,

      P[ ] = P[A A] = P[A ]+ P[A]= 1

                P[A ]= 1- P[A]

예 Ω ∪

Ω ∪

′ ′ ′
′ ′

∴ ′

I
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Def. 13
The conditional probability P[A|B] is the probability measure for an event A given 
that only outcomes which are in event B are considered, i.e. the probability of 
event A given event B

Evaluation of P[A|B]

P[Ω]=1                              P[B| Ω]=P[B]                      P[B|B]=1

Ω

A             B B B
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P[B|B] : “B event가발생했다는가정하에”

Sample space를Ω에서 B로조정”scale down”
문제의범위를 B로제한

“B가일어날확률”

P[A|B] : “B가발생했다는가정하에 outcome 이 A에속할확률”
“B가발생했다는가정하에 A가발생할확률”
“B범위안에서 A가발생할확률”
“outcome 이 B에속한다고가정하고그것이 A에속할확률”
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P[A|B]                                                          P[A∩B]

P[A∩B] : “outcome이 B에속할확률그리고동시에 A에도속할확률”

P[A∩B], P[B] : old probability measures of Ω

[ ] [ ]
[ ] [ ]P A B
P A B

P B
P B| ,= ≠

I
  0



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 24

(예) 동전 2개던지기
Ω = {HH, HT, TH, TT}

event A=동전두면이모두 H이다.                          S1={HH}
event B=동전두면중최소한한개는 H이다.       S2={HH, HT, TH}

[ ]

[ ]
[ ]

[ ]
[ ]
[ ]

P A

P A B

P A B

P B

P A

P B

=

=

=

=

1

4

1

3

1

4
3

4

                       {HH} / {HH, HT, TH, TT}

                    {HH} / {HH, HT, TH}

          =           (A B)

                       

            

|

I
⊂
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Inversion of the Formula P[A∩B]=P[B] ·[A|B]

P[A|B] 와 P[B]를가지고 P[A∩B]구하기
Since [A|B] is a restricted case, 
it is often easier to determine that value than P[A∩B]

(예)  동전던지기, 한번던져서 H가나오면동전 2개를더던질수있고, T가나오면
동전 1개를추가로던진다.  동전을최대 3개를던져연속된 T를얻을확률
Probability Tree

1/4          HH               P[HHH]=1/8          
1/2       H         1/4           HT               P[HHT]= 1/8                

1/4          TH                P[HTH]= 1/8
1/4          TT                P[HTT]= 1/8 

1/2      T         1/2             T                 P[TT]= 1/4             
1/2             H                 P[TH]= 1/4             

A : 연속된 T를얻는 event,   B : 동전 3개를던지는 event (첫동전이 H일 event) 
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Independence

Def. 14

Two events A, B ⊂Ω are independent if and only if  P[A∩B] = P[A]·P[B].

The probability of an event does not change when a condition is given.

Intersection is reflexive (A∩B = B∩A), so  A being independent of B means B 
being independent of A.

[ ] [ ] [ ]
[ ]P A B P A
P A B

P B
| = =

I
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Bayes’ Theorem

Bayes’ Theorem
In a set of mutually exhaustive and exclusive events which form the partition of the 

sample space and the fact that the event of interest has nonzero probability.

Condition domain을바꿈으로써문제를간단히해석가능

A6                           A3 A1

B

A5                           A4 A2

[ ] [ ]
[ ]

[ ] [ ]
[ ] [ ]∑

==

j

jj

iii
i

ABPAP
ABPAP

BP
BAPBAP

|
|| I
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예) 세사람의프로그래머가프로그램을짜서실행시키는데실행시킬때마다
성공하거나실패의결과를얻음. 
다음과같은확률을알고있을때(모두쉽게측정가능)

Event A1 : 어떤 pgm을프로그래머 1이구현했음.  P[A1]=0.2
Event A2 : 어떤 pgm을프로그래머 2이구현했음.  P[A2]=0.3 
Event A3 : 어떤 pgm을프로그래머 3이구현했음.  P[A3]=0.5
Event B  : 구현된프로그램이실패함.                     P[B|A1]=0.1

P[B|A2]=0.7
P[B|A3]=0.1

어떤실패한프로그램이프로그래머 1에의해구현된것일확률은?

[ ] [ ] [ ]
[ ] [ ]P A B
P A P B A

P A P B Aj j

j

1

1 1

0 0 1

0 0 1 0 0 7 0 0 1

0

|
|

|

.2 .

.2 . .3 . .5 .

.07144

=

= ×
× + × + ×

=

∑
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3.  Combinatorics

N : A number of distinct elements

Number of different samples of length R with replacement
= NR

Number of different samples of length R without replacement

Number of possible arrangement by choosing R out of N
: Permutation of N taken R at a time
P(N,R)
P(N,N) =1,     P(N,0) =1 

)!(
!  
RN

N
−

=
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Number of combinations of N things taken R at a time

Number of subsets of size R we can obtain from the set of size N









−⋅

=
R
N

RNR
N     

)!(!
!

N
N

R R
N

2
0

=






∑
=
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4.  Random Variables
Def.  15

A random variable is a function that assigns a value(real number) to each possible
outcome in the sample space.

예) 주사위게임 짝수 : win,     홀수 : lose
win  → 0       lose → 1

예) 기준온도에서증/감분량표시하는온도계
매분마다측정후증/감온도→현재온도에대한 function

예) Consider a random experiment defined by a sequence of three Bernoulli 
trials. 
The sample space S consists of eight triples of 0’s and 1’s.  
Define a random variable X to be the total number of successes from the three 
trials. 
The tree diagram : Sn  and Fn represent a success and a failure respectively on 
the n-th trial
The probability of success, p, is equal to 0.5. 
The value of random variable X assigned to each sample point is also shown. 
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S2                                0 S3    111         0.125         3
S1                             

0  
0 F3    110         0.125         2

0                             F2                                   0   S3   101         0.125         2
0 

0  F3    100         0.125         1 
0

S2                                0 S3    011         0.125         2 
F1                             

0  
0 F3    010         0.125         1

0                              F2                                  0    S3   001         0.125         1
0 

0   F3    000 0.125 0
sample points(s)     P(s)        X(s)                      
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Def. 16

The probability mass function (pmf) of  the random var. X is a function with the 
domain consisting of the event space of the random var. X, and with its range in 
the closed interval [0. 1]

( ) ∑
=

===
xsX

X sPxXPxP
)(

)(][
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Properties of the pmf

Properties of the pmf
(1) 
(2) Since the random variable assigns some value x∈R to each sample point s∈S, 

we have

(3)  For a discrete random variable X such that
{x1,  x2, x3,····}

예) 직전동전 3개로의 Bernoulli 실험
For  x=0, 1, 2, 3 Px(0) = 0.125

Px(1) = 0.375
Px(2) = 0.375
Px(3) = 0.125

∑ =
i

iX xP 1)(

∑
∈

=
RX

X xP 1)(

( ) yprobabilit a is P      :     1)(0 x xxPX ≤≤
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Cumulative Distribution Function(CDF)

CDF 또는 Probability distribution function, distribution function
Probability mass function Px(x)는 random variable X 가 x의값을가질때의
함수

어느 set {s|X(s) ∈A} for some subset A of R의확률을구하고자할때
CDF이용
P[X∈A]는 event[X∈A]의확률

P[X∈(a,b)]   -->  P(a < x < b) 
P[X∈(a,b]]   -->  P(a < x ≤b)

예) 동전 3개로 Bernoulli 실험예
P[X≤1] = P[X=0] + P[X=1]

= Px(0) + Px(1) = 0.125 + 0.375 = 0.5 

)(][

})(|{})(|{

i
Ax

X

iAx

xPAXP

xsXsUAsXs

i

i

∑
∈

∈

=∈

==∈
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Def. 17

is called  cumulative distribution function(CDF) or the probability distribution 
function of the random variable X.

∑
≤

=≤=≤−∞=
∞∞

tx
XX xPtXPtXPtF )(][]<[)(              

by defined    , < t  <  -   Fx(t),function    The

( )
 

( )xP

aFbFaXPbXPbaP

x
X∑

≤∞−

=

−=≤−≤=≤

t<
tF        

 then variable,random lueinteger vaan  is X If

][][][][]X < [
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예)  Bernoulli  실험예의 CDF                                         * 연속적 r.v. 의경우

Fx(x) Fx

1.0                    0.85                                     1
0.75                  
0.5           0.5                                           

0                                   x    
0.25

0.125
0            1           2          3         4

F P X P X

F P X P X P X

F P X F P X

F P X

( ) [ ] [ ] .

( ) [ ] [ ] [ ] .5

( ) [ ] ( ) [ ] .875

( ) [ ]

0 0 0 0 125

1 1 0 1 0

2 2 1 2 0

3 3 1

= − ∞ ≤ = ≤ =
= ≤ = = + = =
= ≤ = + = =
= ≤ =

 <
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Three properties of CDF

4가지대표적 CDF
Geometric distribution : infinite set, discrete
Exponential distribution : infinite set, continuous
Poisson distribution : infinite set, discrete
Binomial distribution : finite set, discrete of possible values

( )
( )

( ) ( ) ( )
     1  )F(  0  ==>       

ingnondecreas is F >-   ,FF       ,<For   (3)
1F (2)

0-F (1)

2121

≤≤
≤

=∞
=∞

  x
xxxthenxx
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Geometric Distribution
Geometric Distribution

Head 나올확률 1-p,   tail 나올확률이 p인동전
Let K be the random variable that represents the number of flips required to 
obtain the first head

P[flip the first head on k-th flip]
= (1-p) pk-1 for  k = 1, 2, ····

Modified Geometric pmf : the random variable that represents the number of  flips 
before we obtain a head, 

P[flip the first head on (k+1)st flip] = (1-p) pk for  k = 0, 1, 2, ····

F k P

p p p

n

k

n

n

k
k

( )

( )

=

= − = −

=

−

=

∑

∑

[flip the first heads on n- th flip]

    
1

1

1

1 1
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A plot of the modified geometric distribution

1

1           2         3          4          5   6
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Binomial Cumulative Distribution

Binomial Cumulative Distribution

Random variable K is the number of heads appearing in those N coin flips

P[ a sequence of N flips with k heads] = (1-p) kpN-k

Many different sequences with k heads

( ) ( )P[k   heads] =  
N

k
p p
k N k






 −

−
1



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 42

CDF

1

0.5

0           1           2          3          4          5 k

( ) ( )F k
N

m
p p

m

k m

N m=






 −

=

−∑ 1
0
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Exponential Cumulative Distribution

Exponential Cumulative Distribution

continuous version of the geometric distribution
random variable T represents the amount of time until a success occurs.

예)  Geometric              불발 불발불발불발발생

0      1      2      3      4 5      6        7      횟수

불발 발생

Exponential          
0                            t                               t 시간
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1시간에평균 0.0001번고장
1회고장까지평균 10000시간소요

CDF

F(t)
1

0                                              t
success의예 : arrival of a job, completion of a task,  response by a user

Success happens at some rate 

    rate          ) = 0.1

   
1

1     

λ

λ λ

λ

=

= =

평균발생횟수

단위시간
예

단위시간

평균발생횟수
회 발생 때 까지의 평균시간

F t P T t e t( ) [ ]= ≤ = − −1 λ

)예 고장율  Hard disk  = 0.0001      times/hourλ
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Poisson Cumulative Distribution

Poisson Cumulative Distribution

Continuous version of the binomial distribution
Trials are allowed at any moment in time
Random variable k of successes during a fixed period of time T and a success

( )
P[k successes in time T] =  

λ λT

k
e

k

T

!
−

rate  λ
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CDF

F(x)
1

0             1        2        3   4        5                  k

( ) ( )
F k

T

n
e

n

n

k
T=

=

−∑
λ λ

!0
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Probability Density Functions

특성
Continuous version of probability mass function(pmf)

Functional representation of the  
probability measure

The density function is a measure of the amount of the increase in the 
cumulative distribution func.(pmf pmf 에서와에서와 같이같이 probability measureprobability measure는는 아님아님)

Def. 18
The probability density function f(x) is the derivative of the cumulative 
distribution function F(x) :

∫ ∞−
=→

x
dyyfxFxF

dx
dxf )()()(    )(
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Define the derivative of the distribution function at a discontinuous 
jump to be a impulse function

F(x)                                             F(x)                
1

1

0
0                                       x

f(x)                                            1        2
f(x)

1

x    x
0           1           2                       

시작점의 f(x)값은 F(x)마다다름. 1보다클수있음. f(x)는확률아님

( )δ x

δ δ δ( ) ( ) ( )0 1 2                     
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Basic properties of the Density Function

Basic properties of the Density Function

2. Since F(x) is nondecreasing,   f(x) ≥ 0

- No bounds on the value of f(x) at a point x.

1. Since F( )= 1,    ∞ =
−∞

∞

∫ f x dx( ) 1
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Uniform Dist.[0,1]                      Uniform Dist.[0,0.5]

F(x)                                                          F(x)

1                                                              1

0                  1                   x                     0 0.5       1                    x

f(x)                                                          f(x)

2
1

1

0                 1                 x                           0       0.5       1             x 
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Calculating Probabilities

The calculation of the probability of any event is simply a series of additions and 
subtractions of cumulative distribution. 
r.v. X      {a < x ≤ b}

( )

( )

case discrete :   summation pmf

case continuous :   n integratio pdf

 

dxxf = F(a) - F(b) = b]  x < P[a

b]  x < P[a = a] P[x  - b] P[x 

dxxf = F(b) = b]  x < P[a + a] P[x  = b] P[x 
-

CDF

CDF

b

a

b

 →

 →

∫

∫∞

≤

≤≤≤

≤≤≤
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Calculating Expectation (평균, 기대치)

Def. 19
The expected value E[X] of a r.v. X is the weighted sum(integral)  of all possible 

values of the r.v.

예) 주사위를던져얻는수의기대치

E X x P x E X x f x dxx x[ ] ( ) [ ] ( )= ⋅ = ⋅
− ∞

∞

− ∞

∞

∑ ∫            

E x[ ] .= × + × + × + × + × + × = =1
1

6
2
1

6
3
1

6
4
1

6
5
1

6
6
1

6

21

6
3 5
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예) expected value of a r.v. with modified geometric distribution
p : 실패확률,           (1-p) : 성공확률

( )

( ) ( )

( ) ( )

( ) ( )
( )

E K k p p

k p p p p p k p

p p
d

dp
p p p

d

dp
p

p p
d

dp

p

p
p p
p

p

p

k

k

k

k

k

k

k

k

k

k

[ ] = − ⋅

= − ⋅ ⋅ = − ⋅

= − = −

= −
−







 = −

−
=

−

=

∞

−

=

∞
−

=

∞

=

∞

=

∞

∑

∑ ∑

∑ ∑

1

1 1

1 1

1
1

1
1

1 1

0

1

1

1

1

1 1

2
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예) expected value of an exponentially distributed  r.v.

The expected valued can be calculated on a function of a r.v. as well as a r. v.
E[x]    first moment, expected value, mean
E[x2]    second moment, expected value, mean
E[x3]    third moment, expected value, mean
E[x3 - x] .....

( )
E T t e dt

te dt
d

d
e dt

d

d
e dt

d

d
e

d

d

t

t t

t t

[ ] = ⋅

= ⋅ = − 







= − = −
−

⋅









= − 





 = − ⋅ −






 =

−∞

−∞ −∞

−∞ −
∞

∫

∫ ∫

∫

λ

λ λ
λ

λ
λ

λ
λ λ

λ
λ λ

λ
λ λ

λ

λ λ

λ λ

0

0 0

0
0

2

1

1 1 1
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Multiple Random Variables

Def. 20
The joint cumulative distribution function F(x, y) is a function defined on all 
values of r.v.  X and Y.
F(x,y) is equal to the probability measure such as

F(x,y) = P[X ≤ x and Y ≤ y]

For the two r.v. case, the function is a surface that is nondecreasing in 
all the direction.

예) 동전을한번던져 T가나오면한번더던지고, H가나오면두번더던질경우, 
C를동전던지는횟수, X를 C만큼던지는동안나온 T의횟수라고하자. 
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1/4          HH                P[HHH] =1/8          f(3, 0)
1/2       H         1/4          HT                P[HHT] = 1/8         f(3, 1)

1/4         TH                 P[HTH] = 1/8
1/4         TT                 P[HTT] = 1/8          f(3, 2)

1/2      T       1/2            T                   P[TT] = 1/4             f(2, 2)
1/2            H                   P[TH] = 1/4            f(2, 1)

( ) ( )
( ) [ ]

( ) [ ] [ ]

( ) [ ]

( ) [ ] [ ] [ ] ( )
( ) [ ] [ ] [ ] [ ] ( )

( ) ( )

F c t F

F P TH

F P TH P TT

F P H H H

F P H H H P H H T P H TH F

F P H TT P H TH P H H T P H H H F

x y F x y

, : , 0

,

, 2

, 0

, ,

, 2 , 2

, ,

2 0

2 1
1

4

2
1

4

1

4

1

2

3
1

8

3 1 2 1
5

8

3 2 1

=

= =

= + = + =

= =

= + + + =

= + + + + =

         

         

         

         

         

                    f =
x y

2∂
∂ ∂
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Marginal density function
Def. 21

The marginal pdf f(x) for a r.v. X is the integral(sum) over all values of r.v. Y of the 
joint pdf f(x,y)

예) 전장의동전던지기예제

Marginal pmf

( ) ( )f x f x y dy=
−∞

∞

∫ ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f c f c f c f c

f f f f

f f f f

= + +

= + + = + =

= + + = + + =

,0 , ,2

,0 , ,2

,0 , ,2

1

2 2 2 1 2
1

4

1

4

1

2

3 3 3 1 3
1

8

1

4

1

8

1

2

( ) ( )P x P x yx
all  y

= ∑ ,
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Conditional pdf

Def. 22
The conditional pdf f(x|A) of a r.v. X given an event A is the pdf f(x) restricted to 

the range of the r.v. within the event A, divided by the probability of the event 
A.

Def. 22`
Let X,Y be continuous r.v. with joint pdf f(x,y)
The conditional pdf fY|X is defined by

( ) ( )
[ ]f x A
f x

P A
| ,= ∈       x A

( ) ( )
( ) ( )f y x
f x y

f x
f xY X

x

x| |
,
,= < ∞     if 0<



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 59

Conditional pmf

Def. 23

Let X and Y be discrete r.v. having a joint pmf p(x,y).
The conditional pmf of Y given X is defined by:

( ) [ ] [ ]
[ ]

( )
( )P y x P Y y X x

P Y y and X x

P X x

P x y

P x
Y X

X

| | |
,

= = = =
= =

=
=
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Unconditioning

Independence

Def. 24

Two r.v.  are independent iff their joint pdf is equal to the product of 
their individual marginal probability density functions.        

f(x,y) = f(x) · f(y)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

P y P x y P y X P x

f y f x y dx f y x f x dx

Y
all

Y X
all

x= = ⋅

= = ⋅

∑ ∑

∫ ∫
∞ ∞

, |

, |

|
 x  x

0 0
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Reliability Modeling

1. Reliability 모델링 개요

2. Reliability Measures

3. Modeling Techniques

4. Evaluation Techniques
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1. Reliability 모델링개요

Reliability(신뢰도)
동작시작순간부터어느관찰시점 T 까지고장없이동작할확률

Dependability(신뢰성)
시스템이제공하는서비스의질, 정확성및연속성과관련된정성적요소
Reliability, availability, safety, performability, maintainability를종합적으로지칭

Reliability 분석의필요성
전자기기의보편화

사무자동화시스템, 의료용전자기기, 금용전산망, 공장자동화시스템

시스템의고장은인명, 재산의손실, 환경파괴

Dependability  향상노력
Fault-tolerant design : redundant, parallel, distributed design
Reliability engineering
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2. Reliability  Measures
순간계수

Reliability, R(t)
A function of time defined as the conditional probability that the system will 
operate correctly during the interval [t0 ,t], given that the system was operating 
correctly at  to
동작시작순간부터시점 t 까지고장없이동작할확률
고장에서복구된순간부터그후시간 t 동안계속동작할확률

Instantaneous(point) availability, A(t)
임의의관찰시점 t 당시에동작하고있을확률

Safety, S(t)
Probability that a system will either operate correctly or will discontinue its 
function in a manner that does not disrupt the operation of other systems
동작개시부터시점 t 까지시스템이불안전상태에처하지않을확률

(예)  하드디스크시스템
안전상태: 정상동작, 데이터손실을유발하지않는경미한고장
불안전상태:  저장된테이터가손상을입는고장이발생
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Maintainability, M(t)
Probability that a failed system will be restored to an operational state within a 
period of time t
고장이발생시정해진복구허용시간내에복구할확률

복구된시스템이재고장시복구허용시간내에복구를마칠확률

누적계수
Interval availability
관찰시간 0~t 동안성공적으로동작한기간의비율

Cumulative up-time(CUT)
관찰시간 0~t  동안성공적으로동작한기간의합에대한기대치

Cumulative down-time(CDT)
관찰시간 0~t  동안성공적으로동작하지않은기간의합에대한기대치

Performability P(L, t)
Probability that the system performance will be at, or above some level L at 
time t
→ graceful degradation
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시간무관계수

Mean time to failure(MTTF)
시스템이고장나기까지시간의기대치

Mean time to repair(MTTR)
시스템이고장난후수리되기까지시간의기대치

Mean time between failure(MTBF)
시스템이고장들간격시간의기대치

Steady state availability
시스템이 steady state 에이른후, 성공적으로동작할확률
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Fault
A physical defect, imperfection that occurs within some hardware or software 
component of a system
예) A short between electrical conductors, open or break in conductors , 

physical flaws  in semiconductor device,  endless loop in a program

Error
Fault로인해 accuracy 나 correctness의훼손이출현된상태
예) Electrical device의 fault로인해 line(circuit)의 logic이 0 이어야하는데 1 로되는것

Failure
Error로인해 system의기능이동작하지않거나기준이하의성능을내는상태

Fault Error Failure



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 67

Failure rate
Expected number of failures of a system per a given time period

Failure rate function, hazard function z(t)

( ) ( )
( )

z t
R t

dR t

dt
= − ⋅1

Infant
mortality
phase

useful
life period

wear-out
phase

constant
failure
rate

distribution

decreasing
failure
rate

distribution

increasing
failure
rate

distribution

z(t)

t



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 68

3. Modeling Techniques

Dependability 모델링기법

상태기반모델(state-space model)

시스템이발생할수있는 event에따르는상태변화를표현
Markov model
Stochastic Petri-Nets

비상태기반모델(non state-space model)

Reliability Block Diagram(RBD)
Reliability Tree
Reliability Graph
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Reliability Block Diagram
RBD :  블럭과블럭들을연결하는선분들로이루어지는그래프구조
블럭 : 시스템컴포넌트
선분 : 시스템컴포넌트들간의연관성

RBD는시스템의실제하드웨어구조를표현하는것이아니고시스템
동작면에서각컴포넌트들간의관계를표현

Structure Based Classification
Series Structure 
어느하나의컴포넌트가고장이나면시스템 고장

MTTF(system) < MTTF(any components)
Parallel Structure
적어도하나의컴포넌트라도작동하면시스템작동

MTTF(system) > MTTF(all components)
kOFn Structure

n 개중적어도 k  컴포넌트가작동해야시스템작동
Generalization of the two structures described above. (1OFn, nOFn)

Series-Parallel Structure
Combination of the two above yields a series-parallel system
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Fault-Tolerant DB 시스템

Processing Unit 1

F

S1 S2

P11

P12

M1

P21

P22

M2
D

Processing Unit 2

S: Switch     F: Front-End Processor      M: Memory      P: Processor    D: Database
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DB 시스템의 RBD 모델

P22

P21

M2

D

S2

P12

P11

S1 M1

F
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DB 시스템의 Reliability

RF(t) : reliability of the front-end
RD(t) : reliability of the database
RSi(t) : reliability of the switches i
RMi(t) : reliability of the memory unit  i
RPi1(t), RPI2(t) : reliability of the processor  Pi1, Pi2 ( i =1,2)

RS(t) = RF(t) * RD(t) *(1 - {1 - RSi(t) * RMi(t) *[1-(1- RPi1(t))*(1- RPI2(t)) ] } )

MTTFS =    RS(t)dt 

i=
∏

1

2

0

∞

∫
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Reliability Graph(RG)

시스템컴포넌트들간의동작관계를표시한방향성그래프로서

RBD를확장시킨기법

그래프의방향성성분

시스템의컴포넌트를표시

컴포넌트고장시선분단절

시스템의 Reliability
시작노드로부터끝노드까지연결된경로존재시이상없이동작
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DB 시스템의 RG 모델

SINKSRC
F

S2

D

S1

M1

P11

P12

P22

P21

M2
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RG 모델의 Input, Output

Input Attached to Components
Probability of failure of a component
Distribution of time to failure of a component
Failure rate function of a component

Output Measures Computed

Mean time to failure of the system 
System reliability(or unreliability) at time  t
Steady-state or instantaneous availability of the system
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RG 모델의장점

RGs model operational dependency of a system on its components.

RGs are easy to understand.

Given a description of operational dependency of a system on its
components, the corresponding RG  is easy to generate.

It is easy to do a hierarchical modeling.

Arbitrary time to failure distributions of system components are allowed.
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RG 모델의단점

Stochastic dependency between different faults can not be modeled.
RGs can not model dynamic system structure.
The computational complexity of solving an arbitrary non-series-
parallel RG could be exponential in the number of components.
Details of the fault recovery behavior are not captured by RGs
Only one type of fault for each component is modeled.
RGs can not easily model different system failure modes.
RGs may not be used for dependability analysis of repairable systems.
Common-mode failures are not easily modeled by RGs.
RGs have been traditionally used for block structured systems where
simple failures are assumed.
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Fault Tree(FT)

Fault tree 란 AND, OR, NOT 등의논리게이트들에시스템
컴포넌트들이입력으로서연결된트리

논리게이트의입,출력
해당컴포넌트의고장상태표현(TRUE, FALSE)

컴포넌트가 고장이나면 TRUE 값이, 정상동작하면 FALSE 값이그컴포넌트
노드에연결된선분에할당되어게이트에입력

루트노드에서의논리값

그순간에시스템이정상동작하는지고장인지를표시

FT는시스템의실제구조를나타내는것이아니고시스템고장을유발하는관계를
표현
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FT의 Gate 정의

AND : 모든입력이 fail(TRUE) 이면출력이 TRUE, 그외는 FALSE
OR : 하나의입력이라도 fail(TRUE) 이면 TRUE, 그외는 FALSE
NOT : 입력이 fail 이면출력이 FALSE, 그외는 TRUE
kOFn : n개의입력중적어도 k개가 fail이면 TRUE, 그외는 FALSE
PAND(priority AND) : 모든입력이정해진순서대로 fail되면 TRUE
Inhibit : 2개의입력만허용

2개의입력: inhibit event(enabling condition) 와 component로부터의입력
inhibit event가 TRUE 이면출력은 FALSE
inhibit event FALSE 이고 component가 fail이면 출력은 TRUE

XOR : 오직한입력이 fail되면 TRUE, 그외는 FALSE
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DB 시스템의 FT 모델

Reliability 출력

G1

F   D
G2

G4

G6

G3

G5
S1  M1 S2 M2

P11   P12 P21   P22
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FT 모델의 Input, Output

Input Attached to Basic Events
Probability of failure of a component.
Failure rate of a component.
Distribution of time to failure of a component.
Combination of the above.
Instantaneous unavailability of a component.
Steady state unavailability of a component.
Time that a certain component is operational.

Output Measures Computed
Mean time to failure of the system.
System failure probability by time t,
Instantaneous unavailability at time t.
Steady-state unavailability of the system.
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FT 모델의장점

Fault trees model the conditions leading to system failure.
Arbitrary failure distributions are allowed.
Very large systems can be concisely described.
Use of kOFn gate provides a useful abbreviation.
A fault tree model is easy to understand.
Recent research efforts have made it possible to model sequence 
dependent failures using FTs.
A fault tree model provides useful information about events leading to 
system failure.
Fault-tree models are useful in hierarchical modeling of large and 
complex systems.
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FT 모델의단점

Stochastic dependence of faults can not be modeled.

Fault recovery models may not be modeled.

Complex system behavior can not be modeled: not for  repairable 
systems with a shared repair facility

Complex FT models may require solution time exponential in the size 
of the tree.

Dynamic system structure can not be modeled.
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Markov Model

Dependability measures are expressed as weighted sums of state 
probabilities.
State space  S is  partitioned into

Su : Up states, operational states
SD : Down states, failure states

Instantaneous availability
if X(t)     Su where   X(t) :  State of the MC at time t 
otherwise

Pi(t) : Probability of the system being in state i at time t

Reliability

When SD are absorbing states. 

I t( ) {= 0
1 ∈

R t P I x x t( ) [ ( ) , [ , ]]= = ∀ ∈1 0

R t P i t
i S u

( ) ( )=
∈
∑

A t P I t P i t
i S u

( ) [ ( ) ] ( )= = =
∈
∑1
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CTMC 모델(1)

Two processor subsystem with imperfect coverage.

Pi1

Pi2

2 01

2λc

2 1λ ( )−c

λ
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CTMC 모델(2)

Two processor subsystem with multiple absorbing states.

Failure-repair model

2

3

1 0

2

3

1 0

2λc

2 1λ ( )−c

λ

2λc

2 1λ ( )−c

λ
µµ
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Petri Nets  Reliability Model

Marking Reward Rate Function
(mup == 0) || (sup == 0) || (prup == 0) 0

1otherwise

mup

tmfl

mdn

sup

tsfl

sdn

tpim

prup

tpfl

prtmp

1-c c
tcim

pr2dnpr1dn

tucim
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4. Evaluation Techniques

Mean Time To Failure(MTTF)
Expected time that a system will operate before the first failure occurs.
Expected time until the next failure after a repair.
N identical systems, each system operate for ti before failure.

MTTF
t t t t

N
N= + + + ⋅ ⋅ ⋅ ⋅ +1 2 3

[ ] ( ) ( )MTTF E T t f t dt R t dtT= = ⋅ =
∞ ∞

∫ ∫0 0

( ) [ ]
( ) [ ] ( ) ( )
F t P T t

R t P T t R t F t

= ≤

= ∴ = − >       1 ( ) ( )
( )

F t e e

MTTF R dt e dt

t t

t

= − =

= = =

− −

∞ −∞

∫ ∫

1

1
0 0

λ λ

λ

λ

,       R t

t

예) exponential failure law
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Mean Time To Repair(MTTR)

Average time to repair a system

N faults, ti :  repair time of i-th fault

Exponentially distributed repair time

MTTR
t t t t

N
N= + + + ⋅ ⋅ ⋅ ⋅ +1 2 3

Repair rate  : average number of repairs that occur per time period

        MTTR =  
1

µ

µ
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Mean Time Between Failure(MTBF)

Average time between failures of a system

MTBF = MTTF + MTTR

MTBF
MTBF

MTTFMTTF MTTR

1st
failure

2nd
failure

0 time
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Reliability of Series Systems

Series system contains no redundancy
A reliability block diagram

Ri(t)  : Reliability of component Ci at t
Wi(t) :  An event that component Ci is working at t

assuming Ci are independent

component
C1

C2 C3 Cn⋅ ⋅ ⋅

( ) ( ) ( ) ( ) ( )[ ]R t Pseries = ⋅ ⋅ ⋅W t   W t   W t     W t1 2 3 nI I I I

( ) ( ) ( ) ( ) ( )
( )

R t R t R t R t R t

R t

series n

i
i

n

= × × × ⋅ ⋅ ⋅ ×

=
=

∏
1 2 3

1
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예) R1(t) = R2(t) = R3(t)  = 0.9
Rseries(t) = 0.9 x 0.9 x 0.9 = 0.729

예) A series system of components that satisfy the exponential failure law

( ) ( ) ( ) ( )

( )

R t R t R t R t e e e

e e e

where  

series n
t t t

t
t

t

sy i
i

n

n

n
i

i

n

sy

= × × ⋅ ⋅ ⋅ × = ⋅ ⋅ ⋅ ⋅

= =
∑

=

= ∑

− − −

− + +⋅⋅⋅+
−

− ⋅

=

=

1 2

1

1 2

1 2 1

λ λ λ

λ λ λ
λ

λ

λ λ
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Reliability of Parallel Systems

Only one of n identical components is required for the system to
function

Reliability
Block
Diagram

component
C1

C2

Cn

•
•
•
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Ri(t) : Reliability of component Ci  at t
Oi(t) : Event that the component Ci  has failed at t
Upara (t) : Unreliability of the parallel system at t
Ui (t) : Unreliability of component the Ci  at t

assuming independence

예)   R1(t) = R2(t) = R3(t)  = 0.9
Rpara(t) = 1 - (1 - 0.9) x (1 - 0.9) x (1 - 0.9) = 0.999

( ) ( ) ( ) ( ) ( )[ ]U t Ppara = ⋅ ⋅ ⋅O t   O t   O t     O t1 2 3 nI I I I

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

U t U t U t U t U t

R t U t U t R t

para n i
i

n

para para i
i

n

i
i

n

= × × ⋅ ⋅ ⋅ × =

= − = − = − −

=

= =

∏

∏ ∏

1 2
1

1 1

1 1 1 1
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Reliability of Series/Parallel Systems

A system that contains both series and parallel structure
Reduce the reliability block diagram to a single series diagram by 
replacing parallel portions with an equivalent single element

Disk 1

Disk 2

Disk 3

Interface
1

Interface
2

bus printer

printerbus Interfaces Disks
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( ) ( ) ( ){ }[ ] ( ){ }[ ] ( )R t R t R t R t R tsystem bus IF Disk= × − − × − − ×1 1 1 1
2 3

printer

R(t)

R(t)

1 - (1 - R(t))2
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M-of-N Systems

M of the total N identical modules are required to function
Generalization of the parallel systems
2-of-3 system : TMR(Triple Modular Redundancy) System

module  1

voter
input

module  2 output

module  3 majority
voting
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( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ } ( ) ( ){ } ( ) ( )

RTMR t R t R t R t R t R t R t

R t R t R t R t R t R t

= + − +

− + −
1 2 3 1 2 1 3

1 1 2 3 1 1 2 3

( ) ( ) ( )
( ) { }

if R t R t R t R

R t R R R R RTMR

  

   

1 2 3

3 2 2 33 1 3 2

= = =

= + − = −

Let    RTMR(t)  :  Reliability of TMR system
Ri(t)  :       Reliability of module i

1

0.5

R,   Module Reliability 

single module system

TMR sy.

System 
Reliability
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crosspoint
RTMR = 3R2 - 2R3 = R        
2R2 - 3R + 1 = 0
R = 0.5 or 1

개별 component(module)의 reliability 가 0.5인 TMR시스템은 fault  
tolerance는있으나 reliability는 single component system 보다나을
것이없다. 
TMR system이 single module system 보다 reliability가높으려면개별
component의신뢰도가 0.5보다커야한다. 

( ) ( ) ( ){ }

( )

M of N  system reliability
    

     

            
 

− −
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
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1.  Introduction
2.  State Classification
3.  DTMC
4.  CTMC

Markov Models
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1.  Introduction

Modeling a system’s behavior of a discrete state space system
: Characterize the dependency of a possible state on the sequence of states S    

through which the system has previously passed.
S = S1,  S2,  S3, S4, ..... , Sn, Sn+1, ....
S = {m1, m2, m3, m4, ..... , mk}
P[ Sn+1 = mi | Sn = mj , Sn -1 = m1 , Sn -2 = mk , .....  , S1 = m5]

To  determine the probability of a particular state being the next state.
To determine the state which the system visits most frequently.
To determine the state in some time t after the system begins from a initial state S1

May use simulation for these purpose. But the simulation becomes too 
complex to count all the different history.



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 102

Stochastic process
Discrete time processes : the processes are embedded at separate points in time.
Continuous time processes : the processes that change states at an arbitrary point 
in time.

Different levels of complexity of stochastic processes are determined 
by the dependencies between state changes.

The next state depends on its entire past history of state changes.
The next state depends on the last state change.
The next state depends on what the last state was.
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Types of discrete state space stochastic processes that depend only 
on the history from the last state change

1. Semi - Markov process
The next state may be any one in the state space.
The next state probabilities depend on the current state and are arbitrary.
Arbitrary distribution of time between state changes.

2. Random walk
The next state may be any one in the state space.
The next state probabilities depend on the distance from the current position.

Arbitrary distribution of time between state changes.

[ ]P S m S m Pn k n j k j+ −= = =1 |
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3. Markov chains
The next state may be any one in the state space.
The next state probabilities depend on the current state and are arbitrary.
Exponential distribution of time between state changes 

for the continuous time Markov chains(CTMC),
Geometric distribution

for the discrete time Markov chains(DTMC).

4. Birth - Death process
The next states are the nearest-neighbor state.
The next state probabilities are zero if the next state is not a neighbor state of 
the current state.
Exponential/geometric distribution of time between state changes.
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Semi-Markov

Markov

Birth
Death

Random
walk  Poisson

Different Types of Stochastic Processes



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 106

Example of a Markov chain : a model of a processor

State space S = {idle, busy, waiting, broken, in repair}

Possible state changes

Current

State

Possible

Next State

Possible

Next State

Possible

Next State

Idle Busy Broken      -

Busy Idle Waiting Broken

Waiting Busy Broken      -

Broken Repair      -      -

Repair Idle      -      -
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Transition probability matrix is a stochastic matrix

Graphical representation of a Markov chain

.4

.5.75

.3

.3

Waiting

.3

.4

.55

Broken

.05

.5

.2
RepairIdle Busy

.6

.1

.05

States    Idle Busy Waiting Broken Repair

Idle

Busy

Waiting  

Broken

Repair

0.20  0.75  0.00    0.05    0.00

0.30  0.30  0.30    0.10    0.00

0.00  0.55  0.40    0.05    0.00

0.00  0.00  0.00    0.50    0.50

0.60  0.00  0.00    0.00    0.40






















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Example of a Birth Death process 
State space S = {0, 1, 2, 3, ...... }
Possible state change

for state 0,                 next state is 0 or 1
for all other state i,     next state is i-1,  i,  i+1

Transition probability matrix

Stochastic matrix
a b

a b d for ii i i

0 0 1

1,    1

+ =
+ + = ≥  P

a b

d a b

d a b

d a b
=

























0 0

1 1 1

2 2 2

3 3 3

0 0

0

0

0 0
•

•
•
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State diagram

21

a3a2a1

43

a4

b4b3b2b1

d4d3d2

0

a0

b0

d1

• • • • •
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2.  State Classification

Def. 6.1
A state is recurrent if the system is in that state and will return to that state through 
a series of transitions with probability 1.

Def. 6. 2
A state is transient if it is not recurrent. (The probability of returning to that state is 
less than 1)

Transient state도 recur할수있으나반드시 recur된다고보장못함.

Recurrent state는 recur하는데걸리는시간에따라 두가지로분류.
Recurrent nonnull
Recurrent null



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 111

Def. 6.3
A recurrent state is recurrent nonnull if the mean time to return to the state is finite.

Def. 6. 4
A recurrent state is recurrent null if the mean time to return to the state is infinite.

The number of states in a system with recurrent null states is infinite.

In a finite state space Markov chain, there are no recurrent null states 
and not all states can be transient.

Recurrent state는 recur하는형태에따라아래와같이분류.
Aperiodic state
Periodic state
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Def. 6.5
A recurrent state is aperiodic if, for some number k, there is a way to return to the 
state in k, k+1, k+2, ...., ∞ transitions.

Def. 6.6
A recurrent state is periodic if it is not aperiodic.

Example of a Markov chain with periodic states

All states are recurrent, nonnull  and  periodic.

0

1

0.5

1

0.5

0.5

32

0.5

1
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Example of a Markov chain with aperiodic states

All states are recurrent, nonnull  and aperiodic.

Not having a self-loops does not mean that a state is periodic.

0.5 0.5 0.5

0

0.5

1

0.5

32

1

0.5

0.5

0.5

1

1 2

1

0
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Def. 6.7
A  Markov chain is irreducible if all states are reachable from all other states.

Theorem 6.1
All states of an irreducible, finite state MC are of the same type.
예) One state of an irreducible MC is aperiodic All states are aperiodic.
예) One state of an irreducible MC is periodic. 

All states are periodic with the same period.
예) One state of an irreducible MC is recurrent. 

All states are recurrent.
∗ Irreducible MC 가 infinite state space를가질때 transient states를가질수
있다. 

irreducible MCreducible MC
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Def. 6.8
A Markov chain is called
transient                 if all its states are transient. 
recurrent nonnull    if all its states are recurrent nonnull. 
recurrent null          if all its states are recurrent null. 
periodic(aperiodic) if all its states are periodic(aperiodic).

Def. 6.9
If a Markov chain is irreducible, recurrent nonnull and aperiodic, it is called ergodic.

Theorem 6.2
If a Markov chain is ergodic, there exists a unique limiting distribution for the 
probability of being in a state k denoted by πκ independent of the initial state. 
(steady state probability equilibrium probability)
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예) ergodic MC

0 1 2 3

( )

( )[ ]

π π π π π

π

=

= =
→∞

0 1 2 3, , ,

lim

     :   steady  state  probability  vector

i
t
P X t i



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 117

3.  DTMC

Markov chain model of a system
Operation of a system → (possibly infinite) sequence of states
The way of predicting system operation.

→ not a specific  sample path of the Markov process 
but the relative frequency of the different outcomes

State probability vector P=( pi )
pi :  (mean) probability of finding the system in state i

예) Communication interface that is either busy or idle.
어느순간에 system이 busy일때 P = ( pbusy , pidle ) = (1,0)
어느순간에 system이 idle일때 P = (0,1)
여러번관찰한결과, (평균적으로) 1/3 시간동안은 busy,  
2/3시간동안은 idle이라면,    P = (1/3 , 2/3)
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One-step transition probability matrix P = [pij ]
pij : probability that the system will go to state j in one step when the system is in 

state i

∗ The same matrix that used to represent the DTMC model of a processor.

State probability vector of (n+1) step can be represented with the state 
probability  vector of n-th step multiplied by the one-step transition 
probability matrix.

p(0)P = p(1)
p(1)P = p(2)

p(n)P = p(n+1)

•
•
•

( ) [ ]
[ ] [ ]

P n P X j

P X i P X j X i

j n

n
i

n n

+ = =

= = = =
+

+∑
1 1

1 |
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Chapman-Kolmogorov Equation for DTMC.

A Markov chain is called (time) homogeneous if

Matrix multiplication is associative (not commutative).

N-step transition probability matrix
One step transition probability matrix raised to a power n.
현상태에서 n step후에 system 이각 state에있을확률

P(n) = Pn

( ) ( ) ( ){ } ( ) ( )p p P p P P p P P P p P3 2 1 0 0 3= ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅

[ ] [ ] ( ) ( )P X j X i P X j X i P k P kn k n k ij ij+ = = = = = = =| | ;0 0

( ) [ ] ( ) ( )P n m P X j X i P n v P n v m vij n m n ik kj
k

; | ; ;= = = = + −

∈
∈

+ ∑
       i, j, k  S

       n, m, v  Ι
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Ergodic MC일때 limiting distribution

가존재하고그것은 steady state probability vector이며,  p(0)에무관하게일정하다.

( ) ( )p p P
n

n∞ = ⋅ =
→∞
lim 0 π

p(0) p(1) p(2) p(3) p(4) ... p(∞ )
1 0.20 0.265 0.1805 0.20560 ... 0.215554

0 0.75 0.375 0.4350 0.37725 ... 0.380389

0 0.00 0.225 0.2025 0.21150 ... 0.190194

0 0.05 0.110 0.1170 0.12115 ... 0.116653

0 0.00 0.025 0.0650 0.08450 ... 0.097210
                                                

T a b le  5 .2
  
p(0) p(1) p(2) p(3) p(4) ... p(∞)

0 0.30 0.15 0.204 0.1974 ... 0.215554

1 0.35 0.48 0.372 0.3900 ... 0.380389

0 0.30 0.21 0.228 0.2028 ... 0.190194

0 0.10 0.11 0.121 0.1193 ... 0.116653

0 0.00 0.05 0.075 0.0905 ... 0.097210
                                                

T a b le  5 .3
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Computation of the Steady State Probability Vector

예)

( ) ( )
( ) ( )

p n P p n

p n P p n

⋅ = + → ∞

= +
→∞ →∞

1

1

     n

             lim lim

             P=

n n

π π

Solving  P=   with an extra equation 

     (Why one more equation?  Because P=   is not linearly independent)

i

π π π π

π π

i =∑ 1   gives 

[ ] [ ]π π π π π π π π π π1 2 3 4 5 1 2 3 4 5, , , , , , , ,

0.20 0.75 0.00 0.05 0.00

0.30 0.30 0.30 0.10 0.00

0.00 0.55 0.40 0.05 0.00

0.00 0.00 0.00 0.50 0.50

0.60 0.00 0.00 0.00 0.40























=



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 122

Solve these simultaneous equations for all of the elements of π in terms  of one of 
them. Since the equations are linearly dependent, we can omit one of them, and 
obtain the following solution.

We can now substitute back into our normalization equation to get the value of π2 .

1
5 1
3
10 2
3
5 5 1

3
4 1
3
10 2
11
20 3 2

3
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2
5 3 3

1
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1
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2 4 4

1
2 4
2
5 5 5

π π π π

π π π π

π π π

π π π π π

π π π

+ + =

+ + =
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+ + + =
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π π π π π π π π
1
17
30 2 3

1
2 2 4

23
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23
90 2

= = = =,   ,   ,   

17
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1 1
2
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90 2
1

2
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1183

+ + + + = =







π π  ,      
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A model of a uniprogrammed computer system with 1 CPU, m I/O 
devices

The system will be in one of (m+1) states : 
state 0 (CPU)     or     state i  ( I/0  on device i )

Assume that the request for  device i occurs at the end of a CPU burst with 
probability qi

Assume that a program finishes at the end of a CPU burst with probability,
qo,

No gap between programs

q i
i

m

=
=
∑ 1
0

0

q0 1

2

m
qm

q2

q1

•
•
•
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This DTMC is irreducible, recurrent and aperiodic.
So it is ergodic and there exist the limiting probability distribution.

P

q q q q state

state

state
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In a real time interval T, the number of visits to device j will be πjT on the average.

( )

Solving the above     

Since  

     

     

          j= 1, 2,  m

π π

π

π

π π

0 0
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1
0
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0
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0
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4.  CTMC

Analysis of CTMC(continuous time Markov chain) is similar to that of 
DTMC except that the transitions can take place at any instance of 
time.

( ){ }
( ) ( ) ( ) ( ) ( )[ ]

( ) ( )[ ]

CTMC   X t  t

 X  X   X

                     for    

,

| , , , ,

|
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= = = = ⋅ ⋅ ⋅ ⋅ =

= = = < < ⋅ ⋅ ⋅ < <

− − − −

0

1 1 2 2 0 0

0 1

Ρ

Ρ

X t x X t x t x t x t x

X t x X t x t t t t

n n n n n n

n n n
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The behavior of the Markov chain is characterized by
Probability distribution of the initial state of the system
The transition probability

( ) ( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ] ( )[ ]
( ) ( )

( )

p t t P X t j X t i t t

t t p t t
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 p t t p t t t

 p t
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j
i

ij
i

i

1 2 2 1 1 2

1 2 1 2

2

, |

, ,

|

,

= = =

→ =

= = = = ′ = ⋅ ′ =

= ′ ⋅ ′ ′

→

∑

∑

               <

    T ran s it io n  p robab ility  m a trix  

                               <

    S ta te  p robab ility  vec to r

Ρ
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Transition Rate Matrix

Transition Rate Matrix

Q(t)
Nondiagonal elements : parameters of the exponential probability density function 
for each state change.
Diagonal elements : sum of all the rates for changing from the current state to any 
other state,  but with negative sign.

If Q(t) is independent of t, it is called time homogeneous.
Thus we get ( ) ( )p t Q

d

dt
p t=



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 130

Example : birth-death process

0

λ0

µ1

1

λ1

µ2

2 3

λ2

µ3

4

λ3

µ4

birth rate

death rate

( )
( )

( )
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−
− +

− +
− +

−























0

1

2

3

4

0 0 0

0 0

0 0

0 0

0 0 0

0 0

1 1 1 1

2 2 2 2

3 3 3 3

4 4

λ λ
µ λ µ λ
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CTMC dose not have self-loop transitions.

State 1 에서 state 0, state 2로움직일수있는데 state 0로움직일

확률 : 
µ

λ µ
1

1 1
+
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Steady State Probabilities

Kolmogorov Equations

What is           ?    

Rate of the change of the state probability vector
If t → ∞, the system becomes stable and the rate of change becomes 0.

( ) ( )p t Q
d

dt
p t=

( )d

dt
p t

( ) ( ) ( )Let       lim     then    
t

π π
→∞

= → =p t p t Q
d

dt
p t Q 0
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Example :
Steady state probabilities of the previous example  (  λ λ µ µi i= =, )
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Balance Equation

Balance Equation

각 state별로그 state로의 inflow와 outflow의관계를나타내는식

0

λ0

µ1

1

λ1

µ2

2 k-1 k

λκ−1

µκ

λκ

µκ+1

k+1

λκ+1

• • • • • • • • • •
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Steady state에서는각상태확률 pk(t)의변화율은 0이다. 

Rates of flow into a state = Rates of flow out of the state

( )0

0

1 1 1 1

0 0 1 1

= − + + ⋅ + ⋅

= − ⋅ + ⋅
− − + +λ µ π λ π µ π

λ π µ π
k k k k k k k

                              
----
----

λ π µ π
λ π µ π
k k k k

k k k k

+
+






− − + +1 1 1 1 
                            

: flow out

: flow in
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Balance equation , 를정리하면

즉,

λ π µ π λ π µ π λ π µ π
λ π µ π

κ κ κ κ κ κ κ κ− = − = ⋅ ⋅ ⋅ = − =
=

+ + − −1 1 1 1 0 0 1 1

0 0 1 1

0

10 2

λκ

µκ+1

k+1k• • • • •

flow rate동일, 즉 flow의변화정도는같아짐

π
λ
µ π

µ
λ πk

k

k
k

k

k
k= =−

−
+

+
1
1

1
1
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Example : Machine Breakdown
Consider a component with a constant failure rate λ . Upon failure, it is repaired 
with an exponential repair-time distribution of parameter µ . MTTF MTTR= =

1 1

λ µ
, 

µ

DU

λ
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( )π π π
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From the balance equation,

                

Since   t

       

 

 

Steady state availability   

                                      

1,   we ge

1 1         

1

1

λ µ+
=

+1

MTTF

MTTF MTTR

Compute the steady-state availability of the component.
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Markov Chains with Absorbing States

Markov chains with absorbing states

Absorbing states : a state that has incoming transitions only
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Example
Assume that we have a two-component parallel redundant system with a single 
repair facility with rate µ. 
The components have constant  failure rate λ .  
When both components have failed, the system is considered to have failed and 
no recovery is possible. 
What is the reliability of the system?

Solution 
Let the state space be {0, 1, 2} where i represents the number of working 
components.

This MC is not ergodic. What we need is transient analysis. Initial state distribution
is required for the analysis.
Assume that   p2(0) = 1,    p1(0) = p0(0) = 0.

12 0

2λ λ

µ
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( ) ( ) ( )
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Taking Laplace transform     
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( )

( ) ( ){ }

( )

( ) ( ) ( ) ( )
( )

Solving the above equations for  we get

       

After an inversion, we get , the probability 

that no components are operating at time t. 

The system is up when 1 or 2 components are operating.

         R t
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Queueing Theory

1.  Classification of Queues
2.  System Utilization
3. Little’s Formula
4.  M/M/1  Queue
5.  M/M/m Queue
6.  M/M/∞ Queue
7.  M/M/1/L/N  Queue
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1.  Classification of Queues

Notation of queues is based on five features
1. The distribution of time between arriving customers
2. The distribution of time to service a customer
3. The number of servers
4. The buffer size that can hold arriving customers
5. Population size

Types of time distribution
M  : Markovian (Memoryless, exponential distribution)
D  : Deterministic
Er : r-stage Erlang (r개의연속된 exponential distributed r.v.)
Hr : r-stage hyperexponential
G  : General distribution
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M/M/1/∞/∞
Arrival time dist/ service time dist/ no. of server/ buffer size/ pop. size
보통 M/M/1으로표시

µ
Poisson arrival 
stream with 
average rate λ

queue(b
uffer)

server
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Service policy

1. FCFS
2. LCFS
3. RR
4. PS (Processor Sharing) : RR with very small time quantum
5. Random
6. Priority
7. Others (SJF, SRTF, .....)
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Priority Scheme
1. Non-preemptive : Arriving customer does not affect the customer in service
2. Preemptive-resume :

If an arriving customer has higher priority, the current customer in service is 
preempted
When the preempted customer begins service again, the service resumes 
where it left off

3. Preemptive-restart
If an arriving customer has higher priority, the current customer in service is 
preempted
When the preempted customer begins service again, the service restarts
from the beginning as if no service had been received

Because of the memoryless property, preemptive resume and 
preemptive restart are identical for exponentially distributed service 
time.
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2.  System Utilization

Utilization
The fraction of time a system is busy.
Increased by the increase of the load on the system
A bottleneck will decrease overall utilization

In a system characterized by a single server queue, the utilization is 
the fraction of time a server is busy.
: Sum of the time the system spends serving customer xi divided by     
the total amount of time.

x0 x2x1 x4x3

a1 a2 a3 a4a0

server time

arrival time
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Utilization of a multi-server system

Add up the service times, then divide it by the number of servers to get average

m

2
1

λ
•
•
•

x5 server m time

arrival time

x0 x1 x6x3

x2 x4 server 2 time

server 1 time

a1 a2
a3 a6a0 a7a5a4

P one server  is busy       =
x

m







≡ ρ
λ
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3.  Little’s Formula

Let a r.v. R denote the response time  of a system in the steady state
W : waiting time of a customer(job)
S :  service time
N : Number of customers in the queuing system in the steady state

R = W + S
E[R] = E[W] + E[S]

Little’s Formula (Theorem, Rule)

E[N] = λ × E[R] 

Little’s Formula holds for a broad variety of queuing systems.
Any number of servers, any queuing discipline
Any arrival, service time distribution
Restriction : No job is created or destroyed within the system.
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Example
How many people are at  McDonald’s  on the average?
Observer at outside can figure it out without entering McDonald’s
Observe
32 customers arrive per hour on the average
each customer exits after 12 minutes on the average after he enters.

[ ]

[ ] [ ]

λ

λ

= =
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= ⋅ = ×
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32 1 0 1
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.5333
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                    6.4 customers 
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4.  M/M/1  Queue

Example of a Birth-Death process
Birth rate is a constant  λ   for all states
Death rate is a constant µ

λ
µ
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How to compute πk ?
Using the fact that :   0 k

0 0
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System utilization ρ.
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Conditions for the ergodicity
λ  <  µ  : system is ergodic
λ  = µ  : recurrent null
λ  > µ  : transient

Condition for stability  : λ  < µ  즉

Average number of customers in the system

ρ
λ
µ= <1
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( ) ( )( )

[ ] ( ) ( )
( )

       

Taking z- transform ,  we get
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Average delay in the system (mean response time)

Average number of customers in service
Let a r.v. C   have 0 when no customer is in service and 

have 1 when the server is busy
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Average waiting time in the queue excluding service time

바로 도착한 customer는이미 queue에들어와있는 E[N]만큼의 customer들이

평균 1/µ 만큼서비스받은후에야자기가서비스받기시작한다.
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Average number of customers in the queue
[ ]

[ ] [ ]
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5.  M/M/m Queue

A queuing system with arrival rate λ  and m servers with rate µ  each 
and a common queue
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Average number of customers in the system

Average number of busy servers
Let a r.v. M denote the number of busy server

[ ] ( )
( )

E N k p m
m

m

m

= ⋅ = +
−≥

∑ k
k 0

ρ ρ
ρ π

ρ!
0

2
1

[ ]
[ ]
[ ]

[ ]

[ ]
µ
λρ

µ
λ

µ

λ

ρ

µ
λ

ρ
ππ

ρ
ππ

π

==

==

=
−

+⋅=









−
==≥

−≤≤==
==

∑

∑

−

=

∞

=

mME

m
m

mkME

mmNP

mkkNP
kMP

m
m

k
k

m

mk
k

k

         

      

    

serverA  of rate Service
serverA   torate Arrival=server  a ofn utilizatio ,

 
1

      

 servers,busy  ofnumber  Average

=k        
1

10                       
      

1

0



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 164

Probability that an arriving customer is queued 
(Probability of congestion)
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Example : Queuing scheme of a multiprocessor OS

separate queue common queue
λ
2 µ
λ
2 µ

λ
2

λ
2

µ

µ

Let RS , RC be the response time of the separate, common queuing scheme 

respectively.

Compare E[RS] and E[RC] 
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Common queue : M/M/2 system

[ ] ( )
( )

( )

[ ]

[ ] [ ]

[ ] [ ]

   E N
1-
         

2

   
1-

 
1-

1+

   E N
1-

   E R E N

   E R E R

   Common queue is better

c

c

c c

S c

= + =

= + + ⋅












=

=

= =
−

=
−

=
+
−

>

∴

−

2
2

2

1 2
2

2

1

2

1 4

4

2

2

4 2

4

2

0

2

0

2 1

2

2 2

2 2

ρ
ρ ρ π

ρ
ρ

λ
µ

π ρ
ρ

ρ
ρ
ρ

ρ
ρ

λ
µ

µ λ

µ λ
µ λ
µ λ

!

!

Thus



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 168

6.  M/M/∞ Queue

Infinite server queue : no queuing

A birth-death process with birth rate λ, but  death rate is  k × µ 
where k  is the number of customers in the system.
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7.   M/M/1/L/N  Queue

M/M/1 Queue with a finite amount of storage (L) and a finite population 
(N)

In the case of finite population, it is assumed that each individual 
attempts to join the queue as an independent Poisson process with 
parameter λ. 
(If there are n individuals, the aggregate arrival rate is n λ)

Assume L<N.   (If L≥N, the queues is equivalent to M/M/1/∞/Ν Queue)
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Networks of Queues

1.  Tandem Queues
2.  Open Queuing Networks
3.  Closed Queuing Network
4.  General Network Model
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1. Tandem Queues

Two types of networks : Open and Closed
An open queuing network is characterized by one or more sources of job arrivals 
and correspondingly one or more sinks that absorb jobs departing from the 
network.
In a closed queuing network,  jobs neither enter nor depart from the network.

The behavior of jobs within the network is characterized by 
the distribution of job service times at each center
the probabilities of transitions between service centers 

For each center the number of servers, the scheduling discipline, and 
the size of the queue must be specified.

For an open network, a characterization of job-arrival processes is needed.
For a closed network, the number of jobs in the network must be specified.
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The two-stage tandem network

The service-time distribution at both nodes is exponential and the arrival process 
to the node labeled 0 is Poisson.

µ1
λ µ0

node 0 node 1



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 176

The changes of state occur upon a completion of service at one of the 
two servers or upon an external arrival. 
Since all inter event times are exponentially distributed (by our 
assumptions), the underlying stochastic process is a Markov chain 
with the state diagram shown in the following.
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Let p(k0, k1) be the joint probability of k0 jobs at node 0 and k1 jobs at 
node 1 in the steady state. 

Equating the rates of flow into and out of the state, we obtain the following balance 
equations :

For the boundary states, we have:
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The normalization is provided by :

Therefore the solution of the above relations is:

where ρ0 = λ/ µ0 and ρ1 = λ/ µ1.

The condition for stability of the system is that both ρ0 and ρ1 are less 
than unity.
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0 1 0 0 1 11 10 1, ,= − −ρ ρ ρ ρ                 (1)



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 180

The node labeled 0 is an M/M/1 queue.

Burke’s theorem[1956] says that the departure process of an M/M/1, M/M/c, or 
M/M/∞ queue is also Poisson with rate λ.  
Therefore, the second queue is also an M/M/1 queue.

The solution in Equation (1) becomes:

This is the product form solution meaning the product of the marginal probabilities 
p0(k0) p1(k1) ; hence random variables N0(t) and N1 (t) are independent at the same 
time instance. (Are they independent random processes?   NO! )

This product form solution can be generalized to an m-stage tandem queue.
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Property of Poisson process
Probabilistic splits and probabilistic merge also form Poisson process.

λ
p1

p0
PP(λ)

PP(p0λ)

PP(p1λ)

PP(p0λ)

PP(p1λ)

PP(2λ)

PP(λ)
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2.  Open Queuing Networks

If a queue is visited more than once(there is a feedback), then the 
arrival process to that queue will not be Poisson.
The product-form solution of tandem queues can be generalized to 
any feed-forward network of exponential queues that is fed from 
independent Poisson sources.

Jackson’s theorem [1957] 
The numbers of customers in the queues at time t are independent random 
variables.
The steady state probabilities of the individual queues are those of an M/M/c 
(M/M/1, M/M/∞) system. 
Let the steady state pmf of the queueing network be N(t).
For any possible state 

])([...])([])([])([])([ 332211 KK ntNPntNPntNPntNPntNP =××=×=×===

),...,,( 321 Knnnnn =
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Consider a simple model of a computer system
Jackson’s theorem says that two queues will behave like independent M/M/1 
queues, so

λ I/O

µ0
µ1

p1

p0

CPU

λ0 λ1

Fig.   1   A model of a computer system
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To apply this result, we have to compute the average arrival rates λ0 and λ1 into 
the two nodes :

Thus :
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If  we let B0 denote the total CPU  service requirement of a program, 
then E[B0]=1/(p0 µ0), the mean service time at the equivalent server. 
Similarly, E[B1]= p1/(p0 µ1). 

If  ρ0 >ρ1 ,  then E[B0] > E [B1].  This means the CPU is the bottleneck, the system 
is said to be CPU-bound. 
Similarly, if ρ0 <ρ1 , then the system is I/O-bound.

(c) The same “equivalent” network without  feedback

λ I/O

µ0 p0

CPU

p

p
0 1

1

µ
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The average response time may be computed by summing the 
average number of jobs the two nodes and then using Little’s formula:

We know that a single queue has the following relation.
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Therefore Equation (3) gives the average turnaround time of the 
tandem network without feedback shown in Fig 1 (b).
To determine E[R] and E[N], it is sufficient to know only the aggregate 
resource requirements of a job. Details of the pattern of the resource 
usage are not important for computing these average values.
Figure 1(a) and 1(b) does not hold with respect to the distribution 
function FR(x) of the response time.

Jackson’s result applies in even greater generality. 
Requirement of Jacksonian product form solution

The queueing network has the external Poisson arrival process.
Each queue has FCFS service policy.
Service times of each queue  are independent each other.

Even if each queue of the open queuing system does not have Poisson process 
for input and output, we can still have product form solution.
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Consider an open queuing network with (m+1) nodes, where the ith
node consists of ci exponential servers each with mean service time of 
1/ µ1 seconds. 

Jackson’s theorem states that each node behaves like an independent M/M/ci
queue and, therefore, the steady-state probability of ki customers at node i, i = 0, 
1, ...., m is given by the product from: 

p(k0, k1, ..... , km) = p0(k0) .... pm(km),                    

where pi(ki) is the steady-state probability of finding ki jobs in an M/M/ci queue 
with input λ i and with average service time 1/ µ1 for each of the ci servers.
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3. Closed Queuing Network

Let us now assume a large value of λ, so that the probability that there 
is at least one customer in the job scheduler queue is very high.

We may then assume that the departure of a job immediately triggers 
the scheduling of an already waiting job into main memory.

Consider a cyclic queuing model shown in Fig. 2.
Represent the state of the system by a pair, (k0, k1) where ki denotes the number 
of jobs at node  i (i = 0, 1). 
k0 + k1 = n   is the degree of multiprogramming.
The dot pattern on the line k0 + k1 = n  of Fig. 3  is the finite-state space of the 
cyclic (closed) queuing network.
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Fig.   2  The closed cyclic queuing model
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Fig.   3  State spaces for two-stage networks
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The state diagram for the closed cyclic queuing model

The balance equations are given by:
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If we let ρ0 = a/µ0 and ρ1 = ap1/µ1 , where a is an arbitrary constant, that 
the steady-state probability p(k0, k1) : (by Gordon & Newell)

The normalizing constant C(n) is chosen so that :

The choice of the constant a is quite arbitrary in that the value of p(k0, k1) will not 
change with a, although the intermediate values  ρ0, ρ1, C(n) will depend upon  a. 
Two popular choices of the constant a are a = 1 and a = µ0. 
Choosing  a = µ0 we have ρ0 = 1 and  ρ1 = µ0p1/µ1.
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Using the normalization condition, we get :

How to get C(n)?

By direct evaluation
By using generating function
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Now the CPU utilization U0 may be expressed as :

The average throughput is given by:
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4. General Network Model

More general queuing network that have been found to have a 
product-form solution.

Chandy, Howard, Towsley 1977, Chandy and Yeh 1978, Lam 1977, Kleinrock
1975, Kobayashi 1978, ........

Any differentiable service-time distribution can be allowed at a node, provided that 
the scheduling discipline at the node is PS (processor sharing) or LCFS-PR.

Any differentiable service-time distribution can also be allowed at a  node with 
ample servers. (no queuing needed)

`
Networks with multiple job types can be analyzed.
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1. 성능분석기법개요
2. 페트리넷정의
3. Petri Net 모델해석

Stochastic Petri Nets
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1. 성능분석기법개요

Non state-space model
System component 개별적해석결과의조합
Inter-dependency, concurrency, resource contention 표현에부적합
Product form queueing network
Series-parallel graphs
Fault-tree
Reliability graph

State-space model
State machine
Markov models
Petri nets
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Why Markov Models ?

장점:

Interdependencies among system components
Concurrency
Synchronization
Contention for resources
For both the performance and reliability analysis
Generalization to Markov Reward models

단점:

Largeness problem
Exponential assumption
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Markov model 단점의보완책

Largeness problem
Automatic state space generation : Stochastic Petri nets, high level languages
Efficient numerical solution technique
Model decomposition
Model approximation(simplification)

Exponential assumption
Non-homogeneous Markov process
Semi-Markov process
Markov regenerative process
Approximation of non-exponential distributions by PH-type expansion

Largeness problem
Discrete-event simulation

Needs
Stochastic Petri nets for
( Non-exponential event times with )
Analytic solution methods
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2.페트리넷정의

"Abstract and Formal Model of Information Flow"
"Bipartite Directed Graphs Consisting of Places and Transitions"

Petri Nets,  PN=(P,T,A,C,M0)

P  =  {p1, p2, p3, ... , pj},    a finite set of places
T  =  {t1, t2, t3, ... ,tm},       a finite set of transitions
A ⊆ {P × T} ∪ {T × P},   a finite set of arcs
C : A → {1, 2, 3, ...},           a function of arc multiplicity
M0 : P → {0, 1, 2, 3,...},      the initial marking
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페트리넷의예(1)

통신회선 필요

가용회선 있음

통신회선 할당 가용회선 없음
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페트리넷의예(2)

t4

t5

p6

p1

t1

p2

t2

p4

p3

t3

p5

ParBegin

ParEnd
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페트리넷모델링의 특징

Sequential execution(ordering)
Concurrency, parallelism
Synchronization
Asynchronous activities
Contention
Non determinism
Interdependency
Hierarchical modeling
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동작정의, 순서및실시간성모델링

Sequencing

Concurrency

Fork

Join

Synchronization

Contention



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 205

페트리넷과시간개념

페트리넷에시간개념표현

필요성

Dynamic System Scheduling

Race Condition Modeling

Timing in Communication Protocols

Performance, Reliability Evaluation
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페트리넷성능분석방법

1. 시스템의동작에따른상태변화를페트리넷으로모델링

2. 상태변화에소요되는시간지연을 transition에표현

3.페트리넷모델을 Markov model로변환
(1) Petri nets Reachability graph 
(2) Reachability graph             Reduced reachability graph

4. Markov model을해석
(1) Solve Markov model : state probabilities
(2) Compute performance metrics with reward parameters
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시간지연의모델링

페트리넷 시간페트리넷
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시간페트리넷과 Markov Models

Deterministic Timed Nets : (Generalized) Timed Petri Nets
Stochastic Petri Nets(SPN) → CTMC
Generalized SPN(GSPN) → CTMC
Discrete Time SPN → DTMC

EXP(GEO) distributed firing times

Extended SPN(ESPN) → SMP
EXP and GEN distributed firing times
Reduced reachability graph must have Markov property each time when marking 
change occurs.

Deterministic & SPN(DSPN) → MRGP
EXP and DET distributed firing times
At most one DET transition can be enabled in a marking.

Markov Regenerative SPN(MRSPN) → MRGP
EXP and GEN distributed firing times
At most one GEN transition can be enabled in a marking.
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통신프로토콜의페트리넷모델

Process
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Send
message

Ready to
send

Being
transferred

Wait
for ACK Buffer

filled

ACK
received

Transmit
ACK

Being
transferred

Transmit
message

Buffer
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Process
2

Process
message
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Producer-Consumer System Model
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Fault-Tolerant SW Model
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Model of a Simple Client-Server System
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3. Petri Nets  모델해석

Marking : 페트리넷내의 token  분포상태
각 place 별 token 수의나열
페트리넷으로표현된시스템의상태를의미

(1 0 2 0) :  1번 place 에 token 1 개, 2번 place 에 token 0 개, 
3번 place 에 token 2 개, 4번 place 에 token 0 개가배치된상태

Tangible marking
Timed transition 만 enable 된 marking
이 marking 에서후속 marking 으로이동하기까지시간소요

Vanishing marking
적어도한개의 immediate transition이 enable 된 marking
이상태에서지체되는시간없음 (시간지연 = 0)
후속 tangible marking에합침 (probabilistic switching)
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Reachability Graph
Initial Marking
m0 = 10100000

m1 = 10010000
m2 = 01010000

m5 = 01000010
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Reduced Reachability Graph

Initial Marking
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CTMC
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Infinitesimal Generator Matrix

Q  =

− +
−

− +
−

−
− +

−
− +

−
−

( )

( )

( )

( )

λ Υ λ Υ

Υ Υ

Υ λ Υ λ

Υ Υ

μ μ

η Υ η Υ

Υ Υ

Υ η Υ η

β β

Υ Υ

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



Chungnam National Univ. / Distributed Systems Lab. / H. CHOI 218

Solution Methods
Solve CTMC

π = (π1, π2, π3, . . . , π10):  steady state probability vector of the CTMC
π Q = 0
Iterative method : Gauss-Seidel method, SOR method

p(t)=( p1(t), p2(t), p3(t), . . . ,p10(t) ) : transient probability vector

4th order Runge-Kutta ODE method (non stiff problem)
Uniformization, TR-BDF2 (stiff problem)

Solve Markov reward models
r=( r1, r2, r3, . . . , r10 ) : vector of reward rate for each state
expected steady state reward

expected transient(instantaneous) reward rate

expected accumulated reward

dp t

dt
p t Q
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계산가능한성능치(예)

Mean probability of the server’s being idle
Mean probability of a specific client’s being idle
Mean response time at a client station
Mean number of requests at the server 
Mean number of requests in the server’s buffer
Mean number of requests processed per second

Throughput of the server
Expected firing rate of the transition  t4

if  t4  is enabled,   

if  t4  is not enabled, 

E X ri
i S

[ ] =
∈
∑ πι

ri = η

ri = 0
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Throughput

Example for 5 clients, 1 server system
Mean length of request packet = 125 bytes/packet (1/µ)
Mean length of response packet = 4 Kbytes/packet (1/β)
Mean polling time = 0.004ms (1/γ)
Mean service time = 2ms (1/η)
Request generation rate (λ) : variable
Offered load,    ρ = λ( 1/µ + 1/η )
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Throughput
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Introduction to Simulation

1.  Designing Simulation Model
2.  Programming Simulation
3.  Analyzing Simulation Results
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1. Designing Simulation Model

A study of actions that mimics some reality.
Probability based simulation
Probability based simulations use Monte Carlo method.
Steps of simulation
① Designing simulation model
② Programming simulation model
③ Analyzing simulation results

Simulations are complicated programs that will execute for a large 
number of iterations.
Need to decide

Simulation method : physical simulation or Monte Carlo simulation
Model type
Characteristics of parameters
Model size
Simulation time (Number of iterations)
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Types of simulation models

Static model : States and characteristics of the model do not change over time.
Represents a system at a particular point in time. (Monte Carlo simulation)

Dynamic model : States and characteristics of the model change over time.

Deterministic model : Does not contain stochastic variables.
Known(deterministic) set of inputs that result in a unique set of outputs
Ex) Known input : arrivals of patients at the scheduled appointment time.

Stochastic model : Contains stochastic variables.

Discrete model : System variables change in a discontinuous way over time.
Ex) a bank

Continuous model : System variables change continuously over time. 
Ex) a dam, a worm object losing its heat to the air

Combined model : Some variables are discrete and some are continuous.
Ex) a dam with water gates to outflow
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Generating Random Numbers of Uniform Distribution
In order to have a computer program to simulate a stochastic process, 
we need to generate numbers that represent values of random 
variables of events.
Need algorithms to generate numbers randomly and independently 
based on some distribution.
No generation algorithm can produce truly random numbers. 
: repeat of sequence of numbers

Linear Congruential Method
Zi : random numbers   a,c,m : constant                Z(n+1) = (a*Zn+ c) modulo m
예)    Z1=7,  a=9,  c=11,  m=50

Z2= (9*7 + 11)  mod 50= 24
Z3= (9*24 +11) mod 50 = 27

Mixed Congruential Method
The linear congruential method with c > 0
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Multiplicative Congruential Method
The linear congruential method with c = 0
Periodic sequence appears sooner than the linear congruential method
예)    Z1=13, a=9, m=16

Z2 = (9*13) mod 16 = 5
Z3 = (9* 5)  mod 16 = 13
Z4 = (9*13) mod 16 = 5

UNIX’s rand() uses this method  with  period  2^32  that  returns successive 
pseudo-random numbers in the range from 0 to (2^15)-1.

Additive Congruential Method
A new number is generated by the last generated number to the k-th previous 
number 
Zn = ( Z(n-1) + Z(n-k) )  mod m

Midsquare method
Take the middle digits of the square of a number
예)  a number 12 --->  the square 0144 --->  the random number  14 
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Generating Non-uniform Random Numbers

Exponentially distributed random numbers
Y~EXP(λ)   Z~UNIFORM(0,1)  y= (-1/ λ)*ln (1-z)

Since Z is uniformly distributed over (0,1), FZ(z)=z , 0 <= z <= 1. Thus :

Therefore, Y is exponentially distributed with parameter λ.
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Random numbers of Poisson distribution
N~POI(λ , t)  T~EXP(λ)
Count the number of exponentially distributed random variables needed to add up 
t.

Random numbers of Geometric distribution
N~GEO(p) p:failure probability   Z~UNIFORM(0,1)
Count the number of times that we generate uniformly distributed random numbers 
until we get a number greater than p.
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2. Programming Simulations

Basic structures of simulation programs
1. Time-based simulation
2. Event-based simulation

Time-based simulation
Program control loop is associated with time.
Simple but inefficient.
Basic structure :  Figure  1

Event-based simulation
Execution of the main control loop represents a single event.
Need event queue to maintain the information to decide which event is next .
Complex but efficient and accurate.
Basic structure :  Figure 2 
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Initialize

T = T+ δt

Generate Events

Event 1 Event 2 Event 3 No Event 

T < T_maxSTOP
N Y

Figure 1  Control Flow of Time-Based Simulation
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Initialize

Determine Next Event

Event 1 Event 2 Event 3 Event  4

DoneSTOP
NY

T = time of next event

Case: Next Event

Generate
New Event

Update status

Generate
New Event

Generate
New Event

Generate
New Event

Figure 2  Control Flow of Event-Based Simulation
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Simulation program of M/M/1 queuing system 
main() {

double Ta=200.0, Ts=100.0, te=200000.0, t1,t2,time;
double expntl();
int n;
n=0; t1=0.0; t2=te;  time=0.0;
while (time < te) {

if (t1 < t2) { /* arrival event */
time=t1;  n++;  t1=time+expntl(Ta); /* t1:arrival time of next job */
if (n==1) t2=time+expntl(Ts); /* t2:service time of this job */

}
else { /* service completion */

time=t2;  n--; /* decrease the number of customers in the sy */
if (n > 0) t2=time+expntl(Ts);  else t2=te; /* let  next event be arrival */

}
} 

}
double expntl(t)  double t; {

double ranf();
return( -t*log( ranf() ) );

}
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Accumulating Statistics
Since traces are voluminous, it is required to provide summary statistics about a 
simulation.

Adding program segments for the accumulation of statistics in a simulation 
program.
Calculating mean, standard deviation, pdf(histogram), accumulation of a 
specific statistics.

Cannot get the additional statistics without re-running the simulation.
Potential numerical problems 
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Simulation Tools
SIMSCRIPT

The first version by RAND Corp. In the early 1960s.
The recent version is SIMSCRIPT II.5 by CACI Product Company(1994).

MODSIM(Modern Simulator)
Developed by CACI based on object-oriented concepts.
Newer version is named SIMOBJECT.

GASP IV
A collection of library routines written in FORTRAN.

GPSS(General Purpose Simulation System)
IBM developed the first version in 1961 and the last version in 1970(GPSS V).
GPSS/H by Wolverine Software (‘77), GPSS/PC by Minuteman Software(‘84)

SLAM(Simulation Language for Alternative Modeling)
Evolved from GASP.

Other tools
SIMAN, EZSIM, Sim++, DEVSIM++, SIMNET, SIMFACTORY, COMNET, OPNET, 
BONES, …...
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Simulation languages
Special purpose simulation language : PAWS, SCERT II, RESQ
General purpose programming language : C++, C, FORTARN, Pascal
General purpose simulation language : GPSS, SIMSCRIPT II.5, Simula

Simulation tools
GPSS (General Purpose Simulation System)
CPSim, POSES++, EZSIM, DEVSIM++ , Sim++, SHARPE, SLAM II
OPNET, Bones
COVERS
And many others…...
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3.  Analyzing Simulation Results

Problems in analyzing simulation results
How to determine the accuracy of the reported statistics?
How to determine the duration of the simulation run?
Startup transients : unusual pattern before the simulation reaches steady state
Repeated runs with same starting values for variables : identical events and 
statistics.

Central limit theorem
The mean of a sample of n mutually independent random variables drawn from a 
population that has a mean of µ and a variance of    ,  is approximately distributed 
as a with a mean of µ and    . 
If the simulation runs or batches of a simulation run are long enough, the output 
variables tend toward a normal distribution.
How long is enough is not easy to determine, it is application dependent.

Sample mean
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n
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n

=
=
∑1
1

σ 2
σ 2
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Sample variance

Confidence intervals
If the collection of  n output values are independent and identically distributed with 
a normal distribution, then the actual mean µ would fall with probability  p within an 
confidence interval     ε ( p : confidence level, confidence coefficient).

ε is given by the Student-t distribution normalized by the experimental variance s

예)  950    30  with confidence level 0.95
45.5 %     3 %  with confidence level 0.92
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